Advanced Materials (e.g., Graphene) ?

Advanced materials like graphene are at the forefront of scientific and technological innovations, with significant applications across multiple industries. Here’s an overview of graphene and its significance as an advanced material:

What is Graphene?

Graphene is a single layer of carbon atoms arranged in a two-dimensional (2D) honeycomb lattice. It is considered a “wonder material” due to its exceptional properties that make it a potential game-changer in various fields.

Key Properties of Graphene:

  1. Electrical Conductivity: Graphene is an excellent conductor of electricity, even better than copper. This makes it ideal for applications in electronics, sensors, and energy storage devices.
  2. Mechanical Strength: It is incredibly strong (around 200 times stronger than steel) yet extremely lightweight, which opens up possibilities for use in aerospace, construction, and other structural applications.
  3. Thermal Conductivity: Graphene has excellent thermal conductivity, meaning it can efficiently conduct heat. This property makes it suitable for thermal management applications in electronics and other high-performance systems.
  4. Flexibility: Despite being strong, graphene is also very flexible, which allows it to be used in a wide range of applications, from flexible electronics to wearables.
  5. Transparency: Graphene is nearly transparent to visible light, making it useful for optoelectronic devices like touchscreens, solar cells, and transparent conductive films.
  6. High Surface Area: With a surface area of around 2630 m² per gram, graphene’s large surface area enables it to be used in high-capacity batteries, capacitors, and supercapacitors.

Applications of Graphene:

  1. Energy Storage:
    • Batteries and Supercapacitors: Graphene is being used to create more efficient and durable energy storage devices, such as lithium-ion batteries with higher charge/discharge rates and supercapacitors for faster energy storage.
  2. Electronics:
    • Transistors and Conductors: Due to its high electrical conductivity, graphene is explored in the development of faster and more efficient transistors for next-generation electronics.
  3. Medical:
    • Drug Delivery: Graphene’s biocompatibility and large surface area make it an ideal candidate for drug delivery systems, enabling targeted delivery of therapeutic agents.
    • Biosensors: Graphene-based sensors can be used for rapid and sensitive detection of biological markers in diagnostics.
  4. Composites and Coatings:
    • Graphene is used to reinforce polymers and other materials, making them stronger, lighter, and more durable. It’s applied in industries such as aerospace, automotive, and sports equipment.
  5. Water Filtration:
    • Graphene oxide membranes have shown promise in water purification, where they can filter nanoparticles, salts, and organic molecules, making them useful for desalination and wastewater treatment.
  6. Flexible Electronics:
    • With its flexibility and conductivity, graphene is ideal for the development of wearable devices, flexible displays, and even flexible solar cells.
  7. Sensors:
    • Graphene’s sensitivity to various gases and other substances makes it ideal for sensors, especially in environmental monitoring, medical diagnostics, and detecting hazardous materials.

Challenges in Graphene Development:

  1. Production Scalability: While graphene has been successfully produced in labs, scaling up production to industrial levels in a cost-effective way remains a challenge.
  2. Integration: Integrating graphene into existing products and technologies requires careful engineering to take full advantage of its unique properties.
  3. Toxicity and Environmental Impact: The potential toxicity of graphene, especially in the form of nanoparticles, needs to be studied further to ensure safe use in various applications.

Other Advanced Materials:

While graphene is one of the most exciting advanced materials, other materials are also gaining attention for their unique properties:

  1. Carbon Nanotubes (CNTs): Similar to graphene, but they are cylindrical structures that also exhibit excellent mechanical, electrical, and thermal properties.
  2. Quantum Dots: Nanoscale semiconductor particles with unique optical properties that have applications in displays, lighting, and medical imaging.
  3. Perovskite Solar Cells: Materials used for solar cells that have high efficiency and are cheaper to produce than traditional silicon-based solar cells.
  4. Aerogels: Extremely light materials with low density, used in insulation, space exploration, and environmental cleanup.
  5. Metamaterials: Engineered materials designed to have properties not found in naturally occurring materials, such as negative refractive indices, which can be used for applications like cloaking and advanced optics.

Conclusion:

Graphene and other advanced materials represent the future of technology, offering solutions to energy, electronics, healthcare, and many other industries. However, challenges in production, scalability, and integration must be overcome for these materials to fully realize their potential. As research progresses, we can expect more breakthrough applications to emerge in various sectors.

What is Advanced Materials (e.g., Graphene) ?

Advanced materials refer to a category of materials that have been engineered to possess specific, enhanced properties that make them suitable for specialized applications. These materials often exhibit superior performance compared to conventional materials and are integral to emerging technologies in fields like electronics, energy, healthcare, manufacturing, and environmental management.

One of the most prominent examples of an advanced material is graphene. Here’s an explanation of advanced materials and graphene:

What are Advanced Materials?

Advanced materials are those that have been developed to meet the needs of modern technology, often offering superior characteristics compared to traditional materials. These materials can include metals, polymers, ceramics, composites, and nanomaterials. The key feature of advanced materials is that their properties—such as strength, flexibility, conductivity, and durability—are tailored for high-performance applications.

Types of Advanced Materials:

  1. Nanomaterials: Materials with structures at the nanoscale (1 to 100 nanometers), such as graphene, carbon nanotubes, and quantum dots, that exhibit unique properties like increased strength, conductivity, or chemical reactivity.
  2. Composites: Materials made from two or more distinct components that create a material with superior properties (e.g., carbon fiber reinforced polymers, used in aerospace and automotive industries for their high strength-to-weight ratio).
  3. Biomaterials: Materials that are used in medical applications, such as biodegradable polymers or titanium alloys used for implants and prosthetics.
  4. Smart Materials: Materials that can respond to external stimuli, such as shape-memory alloys or piezoelectric materials that change shape or generate electricity when subjected to stress or changes in temperature.
  5. High-Performance Metals: These include superalloys used in extreme conditions like high temperatures, for instance in jet engines or gas turbines.

What is Graphene?

Graphene is a two-dimensional form of carbon, consisting of a single layer of carbon atoms arranged in a hexagonal lattice. It is considered one of the most remarkable advanced materials due to its exceptional combination of properties.

Properties of Graphene:

  1. Strength: Graphene is incredibly strong, about 200 times stronger than steel, yet extremely light and flexible. This makes it ideal for use in a wide range of structural applications.
  2. Electrical Conductivity: It has exceptional electrical conductivity, surpassing that of copper. This makes graphene ideal for use in electronics and energy storage applications.
  3. Thermal Conductivity: Graphene has the ability to conduct heat better than most materials, making it useful for heat management in electronic devices and cooling systems.
  4. Flexibility: Despite its strength, graphene is highly flexible, which opens possibilities for wearable electronics and flexible displays.
  5. Transparency: Graphene is nearly transparent to visible light, making it ideal for applications like transparent touchscreens and solar cells.
  6. High Surface Area: Graphene’s surface area is immense, with 2630 m² per gram of graphene, which is useful for energy storage and sensor technologies.

Applications of Graphene:

  1. Electronics: Used in the development of faster, smaller, and more efficient electronic devices, including transistors, capacitors, and sensors.
  2. Energy: Batteries and supercapacitors made from graphene could be much more efficient, offering faster charging times, higher energy storage, and longer lifespans.
  3. Medical: Graphene is used in drug delivery, biosensors, and medical imaging due to its biocompatibility and ability to interact with cells at the molecular level.
  4. Water Filtration: Graphene oxide membranes can filter out contaminants at the molecular level, making it useful for desalination and wastewater treatment.
  5. Composites: Graphene is used to enhance the strength, durability, and conductivity of materials like polymers and metals, leading to lightweight, strong materials for industries like aerospace and automotive.
  6. Flexible Electronics: Graphene-based materials are key to the development of flexible screens, wearables, and smart textiles.

Why Are Advanced Materials Important?

Advanced materials like graphene hold the potential to revolutionize industries and contribute to solving some of the world’s most pressing problems, including energy storage, water purification, medical treatments, and sustainable manufacturing. They enable innovations that would be difficult or impossible with traditional materials, paving the way for next-generation technologies that can impact everything from consumer electronics to space exploration.

In summary, advanced materials are engineered to deliver performance that exceeds that of conventional materials. Graphene is a leading example of an advanced material, with exceptional properties that are opening up new possibilities in various high-tech industries.

Who is required Advanced Materials (e.g., Graphene) ?

Electronics and Semiconductor Industry

  • Who Requires It: Electronics manufacturers, semiconductor companies, and tech innovators.
  • Why: Graphene’s excellent electrical conductivity, flexibility, and small size make it ideal for the development of next-generation electronics. It can be used in transistors, capacitors, conductors, and sensors, helping to improve the performance of smartphones, computers, wearables, and IoT devices.

2. Energy Sector

  • Who Requires It: Energy storage companies, electric vehicle (EV) manufacturers, battery developers, and renewable energy providers.
  • Why: Graphene’s high surface area, conductivity, and light weight make it ideal for energy storage systems such as batteries and supercapacitors. It can significantly enhance the performance of lithium-ion batteries, making them faster to charge and longer-lasting, which is crucial for industries like electric vehicles and renewable energy storage.

3. Aerospace and Defense

  • Who Requires It: Aerospace engineers, defense contractors, and manufacturers of aircraft, satellites, and military technology.
  • Why: Graphene’s remarkable strength-to-weight ratio makes it ideal for lightweight, high-strength composites. It is used to create lighter, stronger materials for aerospace components, leading to improved fuel efficiency and performance. The defense industry can also benefit from graphene’s potential in stealth technology, armor, and advanced sensors.

4. Automotive Industry

  • Who Requires It: Automotive manufacturers, especially those focused on electric vehicles (EVs), lightweight materials, and high-performance vehicles.
  • Why: The ability to create stronger, lighter materials with graphene could revolutionize vehicle design, making cars more fuel-efficient, reducing emissions, and improving performance. Graphene-based batteries can also enhance the charging speed and energy density of EV batteries.

5. Healthcare and Biomedical Industry

  • Who Requires It: Pharmaceutical companies, biomedical researchers, and medical device manufacturers.
  • Why: Graphene’s biocompatibility makes it a powerful material for use in drug delivery systems, biosensors, and medical imaging. Its ability to interact at the molecular level with cells opens up applications in targeted therapies and early disease detection.

6. Water and Environmental Engineering

  • Who Requires It: Water treatment plants, environmental researchers, and companies focused on sustainability and pollution control.
  • Why: Graphene oxide membranes are capable of filtering water at the molecular level, making it ideal for water purification, desalination, and wastewater treatment. It can also be used to develop more efficient pollution control technologies by capturing harmful particles and gases.

7. Construction and Manufacturing

  • Who Requires It: Engineers, construction firms, and manufacturers of building materials.
  • Why: Graphene can be used to reinforce conventional materials like concrete and plastics, improving their strength, durability, and conductivity. It has potential applications in smart buildings and lightweight, strong composites for construction.

8. Textiles and Wearables

  • Who Requires It: Apparel manufacturers, wearable tech companies, and developers of smart textiles.
  • Why: Graphene is flexible and can be integrated into textiles to create wearable electronics like smart clothing and flexible screens. This could be used for health monitoring, energy-harvesting garments, or enhancing the functionality of fabrics.

9. Telecommunications

  • Who Requires It: Telecommunication companies, network equipment manufacturers, and fiber-optic technology developers.
  • Why: Graphene’s high conductivity and lightweight nature can be used to enhance the performance of telecommunication equipment and optical fibers, leading to faster internet speeds, more efficient data transmission, and improved network infrastructure.

10. Research and Development (R&D)

  • Who Requires It: Universities, research labs, and technology startups focused on innovation in materials science and nanotechnology.
  • Why: Graphene and other advanced materials are often the focus of cutting-edge R&D projects that aim to explore new applications and optimize existing technologies. Scientists and engineers in R&D are exploring the material’s potential in a variety of novel technologies, ranging from quantum computing to next-gen nanomedicines.

11. Industrial Manufacturing

  • Who Requires It: Manufacturers of high-performance machinery, equipment, and tools.
  • Why: Graphene and other advanced materials can improve the strength, durability, and efficiency of manufacturing equipment, leading to more cost-effective production processes. This is especially important for industries like aerospace, automotive, and electronics.

12. Smart Packaging and Sensors

  • Who Requires It: Companies in the food packaging, sensors, and electronics industries.
  • Why: Graphene can be used in smart packaging to monitor the quality and freshness of products by integrating sensors that detect changes in environmental conditions. It’s also used in creating flexible sensors for applications ranging from environmental monitoring to health diagnostics.

Conclusion:

Graphene and other advanced materials are revolutionizing many industries due to their extraordinary properties. The sectors listed above require advanced materials to enhance performance, increase efficiency, reduce environmental impact, and enable the development of next-generation technologies. As research and development continue, more industries will likely adopt graphene and similar materials, opening up new avenues for innovation.

When is required Advanced Materials (e.g., Graphene) ?

The requirement for advanced materials like graphene arises in various contexts, driven by technological advancements, emerging challenges, and the pursuit of enhanced performance in industries and applications. Below are key scenarios when advanced materials, including graphene, are required:

1. When Developing Next-Generation Technologies

  • Need: Advanced materials are essential when pushing the boundaries of technology to create more efficient, faster, and smaller devices.
  • Example: Graphene is needed for the development of next-gen electronics like flexible displays, high-performance transistors, and quantum computing due to its extraordinary conductivity, flexibility, and small form factor.
  • When: Ongoing – as electronic devices become increasingly compact and powerful, and the demand for faster, more efficient processing grows.

2. When Enhancing Energy Storage and Efficiency

  • Need: Graphene and other advanced materials are crucial in improving the energy storage capacity and charging times of devices like batteries and supercapacitors.
  • Example: In electric vehicles (EVs), renewable energy storage systems, and smart grid technologies, graphene-based batteries can dramatically reduce charging times and increase energy density.
  • When: In the near future – as the world transitions toward clean energy, there is a pressing need for more efficient and sustainable energy storage solutions.

3. When Addressing Environmental Challenges

  • Need: Advanced materials are required to meet the demand for more efficient water filtration, pollution control, and sustainable manufacturing processes.
  • Example: Graphene-based membranes are needed for water desalination and wastewater treatment because of their superior filtration capabilities at the molecular level.
  • When: Immediately – environmental challenges such as global water scarcity and pollution are urgent, and graphene offers solutions that are being implemented in research and pilot projects today.

4. When Creating Lightweight and Strong Materials for Transportation

  • Need: In industries like aerospace, automotive, and construction, there is a constant need to develop materials that are both strong and lightweight to improve fuel efficiency and reduce emissions.
  • Example: Graphene’s strength-to-weight ratio makes it ideal for lightweight, high-strength composites used in aircraft, automobiles, and high-performance vehicles.
  • When: For the long term, but immediate applications are already being tested and utilized in the manufacturing of electric vehicles (EVs), aerospace components, and sports equipment.

5. When Advancing Medical and Biotechnological Applications

  • Need: Advanced materials like graphene are needed to enhance drug delivery systems, biosensors, and medical imaging technologies.
  • Example: Graphene is used in the development of targeted drug delivery systems, which enable more effective treatments with fewer side effects.
  • When: In the short-to-medium term – as medical research progresses, there is an increasing push for personalized medicine and diagnostics, where advanced materials play a key role.

6. When Enhancing the Performance of Manufacturing and Industrial Processes

  • Need: Graphene and other advanced materials are necessary to improve the efficiency, strength, and durability of manufacturing machinery and production tools.
  • Example: Graphene-based composites are used to develop high-performance materials that can withstand extreme conditions in industries such as aerospace, automotive, and electronics manufacturing.
  • When: Ongoing – industries looking to enhance productivity and reduce costs are integrating advanced materials into their production processes today.

7. When Responding to Consumer Demand for Smarter, More Sustainable Products

  • Need: As consumers demand more efficient, eco-friendly, and durable products, advanced materials are required to meet these expectations.
  • Example: Graphene is used in smart textiles and wearable electronics for applications such as health monitoring and energy harvesting.
  • When: Now and in the future – As demand for sustainable products continues to grow, especially in the realms of wearable tech and smart homes.

8. When Improving Communication and Networking Infrastructure

  • Need: The need for faster internet speeds and more efficient telecommunications networks is driving the development of advanced materials that improve data transmission and signal integrity.
  • Example: Graphene’s exceptional electrical properties make it ideal for use in high-speed internet, 5G networks, and optical fiber technology.
  • When: Immediately – As the world moves toward 5G and beyond, advanced materials like graphene are being researched and incorporated into next-gen communication networks.

9. When Developing Smart Materials for New Applications

  • Need: The development of smart materials that respond to external stimuli (like pressure, temperature, or light) is essential for applications in fields like sensor technology, robotics, and healthcare.
  • Example: Graphene can be used in the development of smart sensors that can monitor environmental conditions, detect diseases, or even control electronic devices in real-time.
  • When: In the near term – as the Internet of Things (IoT) and smart systems continue to evolve, there is an increasing need for responsive, adaptive materials.

10. When Creating Next-Generation Consumer Electronics

  • Need: Graphene and similar materials are required to create the next generation of smaller, more efficient, and longer-lasting consumer electronics.
  • Example: Graphene can be used in the development of long-lasting batteries, lightweight screens, and high-efficiency processors for smartphones, laptops, and wearables.
  • When: Soon – Consumer electronics manufacturers are already exploring the integration of graphene to improve battery life, charging speed, and device durability.

Conclusion:

The requirement for advanced materials like graphene is immediate and ongoing, driven by the increasing need for efficient energy solutions, environmental sustainability, technological advancements, and consumer demand. Whether it is in the field of electronics, energy, healthcare, or transportation, advanced materials are necessary to address current challenges and create the technologies of the future. As industries continue to innovate, the demand for materials like graphene will grow, with applications expanding across sectors.

Where is required Advanced Materials (e.g., Graphene) ?

Advanced materials, such as graphene, are required in various industries and applications across the globe. These materials are essential in places where enhanced performance, efficiency, and sustainability are needed. Here are the key areas where advanced materials like graphene are required:

1. Electronics and Semiconductor Industry

  • Where: Globally, especially in regions with strong electronics sectors like the U.S., South Korea, China, and Japan.
  • Need: Graphene is required to develop faster and smaller electronic devices such as transistors, flexible displays, high-speed processors, and memory storage devices due to its exceptional conductivity and mechanical properties.

2. Energy Storage and Battery Manufacturing

  • Where: Key manufacturing hubs such as China, South Korea, Germany, and the U.S. are leading the way in energy storage innovations.
  • Need: Graphene and other advanced materials are used to enhance batteries, especially in electric vehicles (EVs) and renewable energy storage systems. Graphene helps improve energy density, charging speeds, and lifespan of batteries.

3. Automotive and Aerospace

  • Where: Countries with prominent automotive and aerospace industries, including Germany, Japan, the U.S., China, and the UK.
  • Need: In these industries, graphene is used for creating lightweight yet strong materials for vehicle bodies, aerospace components, and high-performance materials. These materials help reduce weight and improve fuel efficiency and strength.

4. Healthcare and Biotechnology

  • Where: Research institutions and medical device manufacturers worldwide, particularly in the U.S., Europe, India, and China.
  • Need: Graphene is used in drug delivery systems, biosensors, medical imaging, and tissue engineering due to its biocompatibility, high surface area, and ability to interact with biological systems.

5. Water Purification and Environmental Protection

  • Where: Regions facing water scarcity or pollution, such as Africa, India, Middle East, and South Asia.
  • Need: Graphene is required for water filtration and desalination technologies due to its ability to filter molecules at the nanometer scale, which can aid in cleaning water and removing contaminants.

6. Construction and Building Materials

  • Where: In areas focusing on sustainable construction, such as the U.S., China, Germany, and the UAE.
  • Need: Graphene can be used to enhance the durability and strength of construction materials such as concrete and steel, making them more resistant to stress, cracking, and corrosion.

7. Telecommunications and 5G Networks

  • Where: Global telecommunications hubs, particularly in North America, Europe, and Asia.
  • Need: Graphene is vital in 5G networks and communication devices. Its unique properties make it suitable for improving signal transmission and data transfer speeds in next-generation communication networks.

8. Consumer Electronics (Smartphones, Wearables, etc.)

  • Where: Primarily in East Asia (South Korea, Japan, China), but also in North America and Europe.
  • Need: Graphene is used in smartphones, wearables, and other consumer gadgets for better battery performance, lightweight construction, and enhanced display technologies.

9. Defense and Military Applications

  • Where: In countries with advanced military capabilities such as the U.S., Russia, China, and India.
  • Need: Graphene and advanced composites are used to create lightweight, stronger, and more durable materials for armor, drones, and other military equipment. They provide enhanced protection and performance in extreme conditions.

10. Nanotechnology and Smart Materials

  • Where: Prominent research institutions and innovative tech companies worldwide, especially in North America, Europe, and Asia.
  • Need: Graphene is a key material in the development of smart materials that can change properties in response to external stimuli (e.g., pressure, temperature, light). This is crucial in fields like sensors, actuators, and robotics.

11. Textiles and Wearable Technology

  • Where: Europe, Asia, and North America, where fashion and technology sectors are merging.
  • Need: Graphene is used in the development of smart fabrics and wearable technology. It can provide flexibility, conductivity, and comfort for applications like health monitoring, fitness tracking, and enhanced fabrics.

12. Mining and Resource Extraction

  • Where: Countries with strong mining sectors, such as Australia, South Africa, Canada, and Chile.
  • Need: Advanced materials like graphene are applied in the development of mining equipment, processing tools, and environmentally friendly extraction technologies to reduce the environmental impact of resource extraction.

Conclusion

Advanced materials like graphene are in demand across the globe, with applications spanning industries such as electronics, automotive, energy, healthcare, telecommunications, and more. Technological hubs in Asia, Europe, and North America are particularly at the forefront of research and application of these materials, addressing global challenges in efficiency, sustainability, and innovation. As new technologies evolve and industries become more reliant on advanced materials, the demand for graphene and similar materials will continue to expand across various regions.

How is required Advanced Materials (e.g., Graphene) ?

The need for advanced materials, such as graphene, arises from the increasing demand for higher performance, efficiency, and sustainability across various industries. Here’s how advanced materials like graphene are required in specific contexts:

1. Enhancing Performance and Efficiency

  • Graphene is highly sought after for its exceptional electrical conductivity, thermal properties, and mechanical strength. It plays a critical role in improving the efficiency and performance of technologies across diverse industries.
  • For example: In electronics, graphene can replace traditional materials to enhance processor speeds and reduce energy consumption.

2. Miniaturization of Devices

  • As industries push for smaller, more powerful devices, advanced materials like graphene are needed to meet the increasing demand for miniaturization.
  • For example: In the electronics industry, graphene allows the creation of tiny transistors that enable the development of more compact and powerful electronic devices.

3. Improved Mechanical Strength and Durability

  • Graphene is required to create materials that are stronger and more durable than traditional materials, which is crucial for industries that demand long-lasting products.
  • For example: In aerospace and automotive industries, graphene-based composites are used to make components that are both lightweight and highly resistant to wear and tear, resulting in fuel-efficient and high-performance vehicles.

4. Energy Storage and Sustainability

  • Graphene is necessary for the advancement of energy storage technologies, particularly in batteries and supercapacitors. It enhances the capacity, charging speed, and lifetime of energy storage devices, making them more efficient and sustainable.
  • For example: Graphene-based batteries can be used in electric vehicles (EVs) to offer longer driving ranges and faster charging.

5. Solving Environmental Challenges

  • Graphene’s properties make it an ideal material for addressing environmental issues, particularly in water purification, wastewater treatment, and pollution control.
  • For example: Graphene oxide membranes are used for water filtration, allowing the filtration of tiny molecules and contaminants at a nano-scale level, making water cleaner and safer.

6. Medical and Biotechnology Advancements

  • In the healthcare sector, graphene is needed for drug delivery, biosensors, and tissue engineering due to its biocompatibility, large surface area, and ability to interact with biological systems.
  • For example: Graphene-based sensors are used in diagnostic equipment for detecting diseases at early stages, enhancing healthcare outcomes.

7. Creating Smart and Wearable Materials

  • Advanced materials like graphene enable the creation of smart materials that can adapt to changes in their environment, such as temperature, pressure, or light.
  • For example: Graphene-based fabrics are being developed for wearable technology, which can be integrated into health-monitoring systems for real-time data collection and feedback.

8. Reducing Environmental Impact

  • The use of advanced materials like graphene can reduce the carbon footprint of industries by improving energy efficiency and reducing the need for raw materials.
  • For example: In the construction industry, graphene-enhanced concrete is used to make stronger, lighter, and more durable buildings with lower energy consumption.

9. Cost Reduction and Resource Efficiency

  • Graphene is sought after because it has the potential to replace more expensive or scarce materials, thereby driving cost reductions in manufacturing and improving material sustainability.
  • For example: In electronics manufacturing, graphene can replace expensive or rare materials like gold or silver, significantly lowering production costs.

10. Enabling Technological Breakthroughs

  • Advanced materials like graphene are critical to making breakthroughs in emerging technologies such as quantum computing, artificial intelligence (AI), and next-generation wireless communications (e.g., 5G and beyond).
  • For example: Graphene-based transistors are used in quantum computing to create more powerful and efficient quantum systems.

11. Enhancing Sustainability in Manufacturing

  • Graphene and other advanced materials are essential in developing sustainable manufacturing practices, where they enable more efficient production processes, recycling, and reuse of materials.
  • For example: Graphene-based composites in automotive and construction industries can lead to recyclable materials, reducing overall waste in these sectors.

Conclusion

The demand for advanced materials like graphene is driven by the need to improve efficiency, enhance performance, address environmental concerns, and enable new technological advancements. Whether it’s for creating lighter and stronger materials, advancing energy storage solutions, solving environmental challenges, or enabling breakthroughs in healthcare and electronics, these materials are essential for industries aiming for innovation, sustainability, and higher functionality.

Case study is Advanced Materials (e.g., Graphene) ?

Case Study: Graphene in Energy Storage – Enhancing Lithium-Ion Batteries

Background:

Energy storage is a critical area of focus due to the growing demand for renewable energy and the rapid rise of electric vehicles (EVs). Traditional lithium-ion (Li-ion) batteries, while widely used, have limitations in terms of energy density, charge/discharge rates, and lifespan. As a result, the development of next-generation materials, such as graphene, is essential to overcoming these challenges and driving innovation in energy storage technologies.

Problem:

The existing lithium-ion batteries face several issues:

  • Limited energy density: They have a finite amount of energy storage capacity, making it difficult to achieve longer durations of use, particularly for electric vehicles.
  • Slow charging times: Batteries can take hours to fully charge, limiting the convenience of devices like smartphones and electric vehicles.
  • Limited lifespan: Over time, the capacity of batteries degrades, leading to the need for frequent replacements, which increases costs and environmental impact.
  • Heat generation: During charging and discharging cycles, heat is generated, which can lead to battery degradation or failure.

Solution:

Graphene, a two-dimensional material made up of a single layer of carbon atoms, offers a solution to these issues due to its:

  • Exceptional electrical conductivity: Graphene can facilitate faster electron movement, improving the efficiency and speed of charging and discharging.
  • Large surface area: Graphene has a very large surface area, which allows for greater energy storage capacity in a smaller space.
  • High mechanical strength: This increases the durability of batteries, reducing wear and tear over time and extending their lifespan.
  • Thermal conductivity: Graphene helps dissipate heat more efficiently, addressing issues of overheating during charge/discharge cycles.

Implementation:

Several companies and research institutions have started integrating graphene into lithium-ion batteries to enhance their performance. For example:

  1. Graphene-based anodes: By replacing traditional graphite with graphene in the anode of lithium-ion batteries, researchers have created batteries that are lighter, have a higher energy density, and charge faster.
  2. Graphene oxide in cathodes: Adding graphene oxide to the cathode of lithium-ion batteries has shown an increase in energy capacity and a reduction in charging time.
  3. Hybrid graphene-based supercapacitors: Some companies have explored hybrid systems combining graphene and supercapacitors with lithium-ion batteries. These systems combine the fast-charging capabilities of supercapacitors with the energy storage capacity of lithium-ion batteries.

Results:

  • Improved Battery Life: Batteries incorporating graphene have shown an increase in lifespan, with less degradation after multiple charge/discharge cycles.
  • Faster Charging: Graphene-enhanced batteries have been able to charge up to 5 times faster than traditional lithium-ion batteries.
  • Higher Energy Density: Graphene-based batteries have demonstrated up to 40% higher energy capacity, allowing electric vehicles to travel longer distances on a single charge.
  • Cost Efficiency: While the initial cost of graphene-based materials can be higher, the longer lifespan and faster charging can reduce overall costs in the long run.

Example – Case of Skeleton Technologies:

Skeleton Technologies, a European company, has developed graphene-based supercapacitors that are integrated into energy storage systems. These supercapacitors use graphene to increase energy storage and speed up charge times. They have been used in various applications:

  • Electric vehicles: Skeleton’s graphene-based supercapacitors are used to increase the driving range of EVs by enabling faster energy storage and reducing weight compared to conventional batteries.
  • Renewable energy storage: Graphene-based capacitors are also used in solar energy systems to quickly store excess energy and deliver it during peak demand times.

The implementation of graphene in energy storage devices has paved the way for innovations in green technologies, contributing to a more sustainable energy future.

Challenges:

Despite the advancements, there are still challenges in the widespread adoption of graphene in energy storage, including:

  • Scalability: While laboratory-scale prototypes have shown promising results, scaling up graphene production to meet industrial demand remains a challenge.
  • Cost: The cost of producing high-quality graphene remains relatively high, though prices have been steadily decreasing with advances in production techniques.
  • Manufacturing integration: The integration of graphene into existing battery manufacturing processes requires adjustments and further research to ensure that it can be produced at an affordable cost without compromising performance.

Conclusion:

The integration of graphene into energy storage solutions, particularly in lithium-ion batteries, demonstrates the transformative potential of advanced materials in addressing some of the most pressing challenges in energy efficiency, sustainability, and performance. The case of graphene-enhanced energy storage systems highlights the significant improvements in charging speed, energy density, and battery lifespan, pushing industries towards more efficient and sustainable technologies. As production methods improve and costs decrease, the widespread application of graphene in various fields, including electric vehicles and renewable energy, will continue to grow, driving innovation and helping to meet the energy demands of the future.

White paper on Advanced Materials (e.g., Graphene) ?

White Paper: The Role and Potential of Advanced Materials: A Focus on Graphene


Abstract: Advanced materials, particularly graphene, have emerged as transformative substances with unparalleled properties that promise to revolutionize various industries. This white paper explores the significance of advanced materials, with a focus on graphene, highlighting their potential applications, current research, challenges, and future trends. By examining their roles in energy storage, electronics, healthcare, and more, this paper aims to provide a comprehensive understanding of how advanced materials can drive innovation and sustainability across sectors.


1. Introduction to Advanced Materials

Advanced materials are engineered substances with properties that are tailored for specific applications. These materials often exhibit superior performance in comparison to conventional materials, such as enhanced strength, conductivity, flexibility, or thermal resistance. Graphene, a two-dimensional sheet of carbon atoms arranged in a hexagonal lattice, is one of the most promising examples of advanced materials. Its remarkable properties, such as high electrical and thermal conductivity, mechanical strength, and flexibility, have positioned it as a cornerstone of future technologies.


2. What is Graphene?

Graphene is a form of carbon, consisting of a single layer of carbon atoms arranged in a hexagonal lattice. Its discovery in 2004 by Andre Geim and Konstantin Novoselov earned them the Nobel Prize in Physics in 2010. The material is notable for the following characteristics:

  • Electrical Conductivity: Graphene is one of the best electrical conductors known, making it ideal for use in electronics.
  • Thermal Conductivity: It exhibits extremely high thermal conductivity, facilitating efficient heat dissipation.
  • Mechanical Strength: Graphene is about 200 times stronger than steel, despite being incredibly lightweight.
  • Flexibility: It can bend and stretch without breaking, making it useful in applications requiring flexible materials.

Due to these exceptional properties, graphene has been identified as a potential game-changer in several industries, from electronics to energy storage to medical devices.


3. Key Applications of Graphene

3.1. Electronics and Semiconductor Industry

Graphene’s superior electrical conductivity makes it an ideal candidate for next-generation electronic devices. It holds the potential to replace silicon in many applications, allowing for faster processors, smaller transistors, and enhanced efficiency in smartphones, computers, and wearable devices.

  • Graphene Transistors: These transistors offer higher speeds and lower power consumption compared to silicon-based transistors, enabling faster computing and more energy-efficient devices.

3.2. Energy Storage and Batteries

One of the most exciting applications of graphene is in energy storage technologies, particularly in lithium-ion batteries and supercapacitors. Graphene-based batteries can provide higher energy densities, faster charging times, and longer lifespans compared to traditional lithium-ion batteries.

  • Graphene-enhanced batteries have been shown to charge five times faster, last longer, and provide more power, making them ideal for electric vehicles (EVs) and portable electronics.

3.3. Healthcare and Medical Devices

Graphene’s biocompatibility and ability to interact with biological systems make it ideal for use in the healthcare sector. Applications range from drug delivery systems to biosensors and tissue engineering.

  • Graphene-based drug delivery allows for targeted delivery of medication to specific cells, enhancing treatment efficacy while minimizing side effects.
  • Graphene biosensors are capable of detecting disease markers at the molecular level, enabling early diagnosis and more effective treatments.

3.4. Water Filtration and Environmental Remediation

Graphene oxide membranes can be used for water filtration, allowing the efficient removal of toxins, salts, and other contaminants. The high surface area of graphene oxide can selectively filter out molecules, enabling cleaner water.

  • Desalination: Graphene-based membranes show promise in improving the efficiency of desalination plants, making fresh water more accessible in water-scarce regions.

3.5. Aerospace and Automotive Industries

In the aerospace and automotive sectors, graphene-based composites are being used to produce lightweight yet extremely strong materials. These composites enhance the performance of vehicles by improving fuel efficiency and durability while reducing weight.

  • Graphene-infused materials help create stronger, more resilient parts, such as body panels and structural components in vehicles, contributing to energy efficiency.

3.6. Flexible and Wearable Electronics

Graphene’s combination of strength and flexibility makes it ideal for flexible electronics, such as wearable devices and smart textiles.

  • Graphene-based conductive inks enable the creation of flexible circuits for wearable sensors, health monitoring systems, and smart clothing that can interact with users’ bodies and environments.

4. Research and Development: Current State and Future Directions

4.1. Current Research

Research in graphene is focused on scaling up production, improving material quality, and exploring new applications. Several techniques have been developed to produce graphene at larger scales, such as chemical vapor deposition (CVD), liquid-phase exfoliation, and chemical reduction. However, the cost of production remains a significant barrier to widespread commercialization.

4.2. Future Trends

  • Graphene-based smart materials: Future developments will likely focus on self-healing materials, energy-efficient coatings, and responsive materials that change their properties based on environmental conditions.
  • Integration into 5G Networks: Graphene is expected to play a critical role in the development of 5G and future wireless communication technologies due to its excellent electrical properties and potential to create ultra-fast communication devices.

5. Challenges and Barriers to Adoption

While graphene has immense potential, several challenges must be overcome to realize its full commercial potential:

  • Scalability and Production Costs: Producing high-quality graphene at a commercial scale remains expensive and inefficient.
  • Integration into Existing Manufacturing Processes: Incorporating graphene into existing industrial processes (e.g., battery manufacturing, electronics production) requires modifications to equipment and workflows.
  • Regulatory and Safety Concerns: The long-term health and environmental impacts of graphene are still under investigation. Proper regulatory frameworks are necessary to ensure safe handling and disposal of graphene-based materials.

6. Conclusion

Graphene, as an advanced material, represents a significant leap forward in material science, offering exceptional properties that can revolutionize numerous industries, from electronics to energy to healthcare. Despite challenges related to production scalability and cost, the ongoing research and development in graphene-based technologies hold immense promise for driving innovation and sustainability across various sectors. By overcoming current limitations, graphene has the potential to be a transformative material that shapes the future of advanced technologies.

Industrial application of Advanced Materials (e.g., Graphene) ?

Industrial Applications of Advanced Materials: Focus on Graphene

Advanced materials like graphene are transforming numerous industries due to their exceptional properties, including high strength, conductivity, flexibility, and low weight. Below is a detailed look at the industrial applications of graphene and other advanced materials in key sectors.


1. Electronics and Semiconductor Industry

Graphene-based Transistors and Circuits

Graphene’s high electrical conductivity and flexibility make it a perfect material for next-generation electronics. It enables the development of smaller, faster, and more efficient transistors, offering better performance than traditional silicon-based devices. This is particularly beneficial for:

  • Flexible and Wearable Electronics: Graphene can be used to develop bendable and stretchable electronics for wearables, such as smartwatches and health monitoring devices.
  • Graphene-based Sensors: These sensors are used in healthcare, environmental monitoring, and security systems. Their high sensitivity to environmental changes allows them to detect gases, toxins, and even biological molecules with high precision.

Graphene in Energy-Efficient Displays

Graphene-based light-emitting diodes (LEDs) and displays provide higher brightness and more energy-efficient solutions for consumer electronics, including televisions, smartphones, and digital signage.


2. Energy Storage and Batteries

Graphene-enhanced Supercapacitors

Graphene is used in the creation of supercapacitors, which store energy and release it much faster than conventional batteries. This makes them ideal for applications requiring quick bursts of power, such as in:

  • Electric Vehicles (EVs): Graphene-based supercapacitors are being developed to enable faster charging times and longer battery life.
  • Grid Energy Storage: They can help store renewable energy, such as solar or wind energy, in large-scale applications, ensuring a steady supply even during periods of low generation.

Graphene-enhanced Lithium-Ion Batteries

Graphene-based additives in lithium-ion batteries improve the charge/discharge rates, increase the energy density, and extend the lifespan of batteries. Applications include:

  • Electric Vehicles (EVs): Graphene-enhanced batteries enable longer range and faster charging for EVs.
  • Consumer Electronics: Laptops, smartphones, and portable devices benefit from more efficient, lightweight, and long-lasting batteries.

3. Automotive and Aerospace Industries

Lightweight Graphene Composites

In the automotive and aerospace industries, graphene is used to develop composite materials that are both lightweight and incredibly strong. These materials help in reducing the weight of vehicles and aircraft, leading to:

  • Fuel Efficiency: Reduced weight results in improved fuel efficiency in cars and planes.
  • Durability: Graphene-based materials are much more resistant to wear, making them suitable for high-performance components in engines, structural parts, and exterior panels.

Graphene-based Coatings

Graphene-based coatings are used for their corrosion resistance, heat resistance, and improved mechanical properties. In the automotive sector, they can be applied to:

  • Car body panels: These coatings protect against scratches, corrosion, and UV damage while maintaining the lightweight and durability of the materials.
  • Aerospace components: Graphene coatings can protect sensitive parts from harsh conditions, such as high-temperature environments or exposure to chemicals.

4. Water Treatment and Environmental Remediation

Graphene Oxide Membranes for Water Filtration

Graphene oxide (GO) membranes have shown great promise in desalination and water filtration. These membranes allow for efficient removal of salts, heavy metals, and organic pollutants from water, making water purification processes faster and more sustainable. Applications include:

  • Desalination plants: GO membranes can significantly improve the energy efficiency of seawater desalination by allowing more selective filtration.
  • Portable water filters: Graphene oxide-based filters are increasingly used in portable filtration devices, providing access to clean water in remote areas.

Environmental Cleanup

Graphene-based materials can also be applied in environmental cleanup efforts, such as:

  • Oil spill remediation: Graphene’s porous structure allows it to adsorb oil and other hydrocarbons, making it useful in cleaning up oil spills and other environmental contaminants.
  • Heavy metal removal: Graphene materials can be used to remove harmful heavy metals from contaminated soils and water sources.

5. Healthcare and Medical Devices

Drug Delivery Systems

Graphene’s biocompatibility makes it an excellent candidate for drug delivery systems. Graphene oxide can be functionalized to carry drugs directly to targeted areas, increasing the efficacy of treatments while minimizing side effects. Applications include:

  • Cancer treatment: Graphene-based delivery systems can target tumor cells, allowing for the controlled release of chemotherapeutic drugs directly to the site of the tumor.
  • Gene therapy: Graphene can be used as a carrier for gene therapy by delivering specific genetic material into cells.

Graphene-based Biosensors

Graphene’s high surface area and electrical conductivity make it ideal for developing biosensors that can detect diseases at a molecular level. These sensors have applications in:

  • Early disease detection: Graphene sensors can be used for early diagnosis of diseases such as cancer, diabetes, and infections by detecting specific biomarkers.
  • Point-of-care diagnostics: Graphene-based biosensors offer fast and affordable diagnostic solutions in remote locations and for home healthcare.

6. Textile and Wearable Technology

Smart Textiles

Graphene is increasingly used in the development of smart textiles and wearable technology. Its combination of flexibility, strength, and conductivity makes it ideal for embedding electronics into fabrics. Applications include:

  • Health monitoring clothing: Graphene can be integrated into fabrics to create clothing that monitors vital signs like heart rate, respiration, and temperature in real-time.
  • Flexible displays: Graphene-based materials can be used to develop flexible and stretchable displays in smart clothing or wearable devices.

Graphene-enhanced Fabrics

Graphene is used to improve the properties of textiles, making them more durable, conductive, and resistant to environmental factors. Examples include:

  • Waterproofing: Graphene-based coatings are applied to textiles to make them water-resistant and stain-resistant.
  • Anti-microbial fabrics: Graphene-infused fabrics possess anti-microbial properties, making them useful in healthcare and athletic wear.

7. Construction and Building Materials

Graphene-enhanced Concrete

Graphene is being integrated into concrete and cement to enhance their mechanical strength, durability, and resistance to cracks. This improves the longevity of buildings, roads, and bridges while reducing maintenance costs.

  • Increased strength: Graphene can increase the compressive strength of concrete, allowing for thinner, lighter, and more sustainable structures.
  • Reduced environmental impact: By enhancing the material properties, graphene can reduce the need for excessive amounts of cement, which is a major contributor to carbon emissions.

8. Future Trends and Conclusion

Graphene and other advanced materials are expected to continue revolutionizing industries by providing innovative solutions to long-standing challenges. As research progresses and production methods improve, we are likely to see:

  • Increased commercialization of graphene-based technologies across multiple sectors.
  • Cost reductions in the production of graphene, making it more accessible for a wide range of applications.
  • The continued integration of graphene with other nanomaterials to create even more powerful composite materials with enhanced functionalities.

In conclusion, the industrial applications of advanced materials like graphene are vast, ranging from electronics and energy to healthcare and construction. The promise of stronger, lighter, more efficient products presents significant opportunities for innovation and sustainability across industries. As these materials become more scalable and cost-effective, their impact on global industries will likely continue to grow exponentially.

Research and development is Advanced Materials (e.g., Graphene) ?

Research and Development in Advanced Materials (e.g., Graphene)

Research and development (R&D) in advanced materials, particularly graphene, has garnered immense interest due to the material’s unique properties and potential to revolutionize various industries. Graphene, a single layer of carbon atoms arranged in a 2D honeycomb lattice, has remarkable characteristics such as:

  • Exceptional electrical conductivity
  • Mechanical strength (around 200 times stronger than steel)
  • Thermal conductivity
  • Transparency
  • Flexibility

These properties make graphene ideal for a wide array of applications, from electronics to healthcare. Below is an overview of the key R&D areas focused on advancing the potential of graphene and other advanced materials.


1. Synthesis and Production Techniques

Current Challenges

The commercial use of graphene is limited by challenges related to its production cost and scalability. Researchers are developing more efficient, sustainable, and cost-effective methods for large-scale synthesis. Key techniques include:

  • Chemical Vapor Deposition (CVD): One of the most common methods to produce high-quality graphene films on substrates, used for applications in electronics and photodetectors. R&D is focused on improving the scalability and lowering the costs of this method.
  • Liquid-phase Exfoliation: This involves dispersing graphite in a solvent and using mechanical energy (e.g., sonication) to break it down into individual graphene sheets. It’s more scalable and can be integrated into inks for printed electronics or coatings.
  • Chemical Reduction of Graphene Oxide: Graphene oxide can be reduced chemically to restore some of the properties of pure graphene. Researchers are refining this process to improve the quality and functionality of the resulting graphene.
  • Electrochemical Exfoliation: This technique involves the use of an electric current to exfoliate graphene from graphite. R&D is ongoing to improve the yield, quality, and consistency of graphene sheets produced this way.

New Frontiers in Synthesis

  • 3D Graphene Structures: Research is focused on developing three-dimensional (3D) graphene structures that can be used in applications such as energy storage (e.g., supercapacitors, batteries) and biomedical devices.
  • Hybrid Graphene Materials: Integrating graphene with other nanomaterials like carbon nanotubes or polymers to enhance its properties for specific applications (e.g., stronger composites, improved conductors).

2. Graphene for Energy Storage and Conversion

Graphene-based materials are at the forefront of R&D in energy storage and conversion. Key focus areas include:

Graphene Supercapacitors

Graphene-based supercapacitors have the potential to provide fast-charging and high-power-density solutions for applications requiring quick bursts of energy, such as in electric vehicles (EVs) and portable electronics. R&D efforts are focused on:

  • Enhancing the charge/discharge efficiency and cycle stability of graphene supercapacitors.
  • Scaling up production of graphene for affordable, large-scale energy storage systems.

Graphene-enhanced Lithium-Ion Batteries

Graphene is being explored to improve the performance of lithium-ion batteries by:

  • Increasing the capacity and reducing charging times.
  • Improving thermal conductivity and cycle life. R&D is also focused on integrating graphene with other materials to create hybrid batteries that outperform conventional lithium-ion technology.

Graphene in Solar Cells

Researchers are investigating the use of graphene in solar cells, especially in the form of transparent conductive films. The goal is to make solar panels more efficient and flexible by:

  • Reducing energy loss and improving light absorption.
  • Lowering production costs of solar cells.

Graphene-based Hydrogen Storage

Graphene’s high surface area makes it a prime candidate for hydrogen storage in fuel cell systems. Ongoing R&D is exploring how to improve the material’s hydrogen adsorption capacity and stability under varying conditions.


3. Electronics and Optoelectronics

Graphene’s exceptional electrical conductivity and optical properties make it ideal for next-generation electronics and optoelectronics. R&D is focused on several key areas:

Flexible Electronics

Researchers are exploring how to use graphene in flexible circuits, wearable devices, and bendable displays. The main challenges being addressed are:

  • Developing processes to create graphene-based flexible electronic components that can be mass-produced and integrated into consumer devices.
  • Enhancing mechanical durability without compromising electrical properties.

Graphene Transistors

Graphene-based field-effect transistors (FETs) are seen as a potential alternative to traditional silicon transistors, especially in high-frequency applications. R&D is aiming to:

  • Improve the on-off switching ratios of graphene transistors.
  • Solve issues with interface defects that affect device performance.

Optoelectronics and Photonics

Graphene’s ability to transmit light and operate at terahertz frequencies makes it highly suitable for optical communication and photonic devices. Research areas include:

  • Development of graphene-based photodetectors for faster data transmission.
  • Creating graphene lasers and light-emitting devices for applications in communications and imaging.

4. Biomedical Applications

Graphene’s biocompatibility, high surface area, and flexibility make it a promising material for biomedical applications. Ongoing R&D includes:

Drug Delivery Systems

Graphene is being explored as a drug carrier that can deliver drugs directly to target sites in the body, especially in the treatment of diseases like cancer. Key R&D efforts include:

  • Functionalizing graphene to target specific cells or tissues.
  • Ensuring the safety and biodegradability of graphene-based drug delivery systems.

Graphene-based Biosensors

Graphene-based biosensors are being developed to detect biomarkers for early disease diagnosis. These sensors can be used for:

  • Cancer detection by identifying specific molecules related to tumors.
  • Infectious disease monitoring by detecting pathogens or other biomarkers in blood or saliva.

Graphene for Tissue Engineering

Graphene’s ability to support cell growth makes it an ideal material for tissue scaffolds in regenerative medicine. Ongoing research focuses on:

  • Enhancing the biocompatibility and functionality of graphene-based scaffolds.
  • Creating 3D graphene-based structures for bone, cartilage, and nerve tissue regeneration.

5. Environmental Remediation and Sustainability

Graphene is increasingly being studied for its potential in environmental protection and sustainability. Key areas of R&D include:

Water Filtration

Graphene oxide membranes are being researched for their potential to filter salt, heavy metals, and organic contaminants from water. R&D efforts aim to:

  • Improve membrane permeability and selectivity.
  • Develop more scalable and affordable production methods for graphene-based filtration systems.

Carbon Capture

Graphene’s high surface area makes it a promising material for capturing carbon dioxide (CO2) from industrial emissions. Researchers are working on:

  • Enhancing the adsorption capacity of graphene for CO2.
  • Creating reusable and economically viable carbon capture systems.

6. Commercialization and Scaling

While the potential for graphene is immense, scaling up its production and commercialization remains a significant focus of R&D:

  • Standardizing graphene production: Establishing consistent, high-quality production methods is essential to reduce costs and ensure the material is accessible for industrial applications.
  • Integration with existing technologies: Research is focused on integrating graphene with current materials and technologies to improve their performance without requiring significant changes to existing infrastructure.

Conclusion

The research and development of advanced materials, particularly graphene, are rapidly progressing across a range of industries, from electronics and energy storage to healthcare and environmental sustainability. However, challenges in scalability, cost, and material integration remain. Continued advancements in synthesis, production, and application development will unlock the full potential of graphene, making it a cornerstone of future technological innovations.


Courtesy : Verge Science

References

  1. ^ “graphene definition, meaning – what is graphene in the British English Dictionary & Thesaurus – Cambridge Dictionaries Online”cambridge.orgArchived from the original on 17 July 2015. Retrieved 4 October 2024.
  2. Jump up to:a b c d e f g h i j k l m n o Geim, A. K.Novoselov, K. S. (26 February 2007). “The rise of graphene”. Nature Materials6 (3): 183–191. arXiv:cond-mat/0702595Bibcode:2007NatMa…6..183Gdoi:10.1038/nmat1849PMID 17330084S2CID 14647602.
  3. ^ Peres, N. M. R.; Ribeiro, R. M. (2009). “Focus on Graphene”New Journal of Physics11 (9): 095002. Bibcode:2009NJPh…11i5002Pdoi:10.1088/1367-2630/11/9/095002.
  4. ^ Pike, Jared (2023). “Is graphene the best heat conductor ever? Purdue researchers investigate with four-phonon scattering”Purdue University Mechanical Engineering NewsArchived from the original on 4 March 2024. Retrieved 1 October 2024.
  5. Jump up to:a b c d Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. (6 June 2008). “Fine Structure Constant Defines Visual Transparency of Graphene”. Science320 (5881): 1308. arXiv:0803.3718Bibcode:2008Sci…320.1308Ndoi:10.1126/science.1156965PMID 18388259S2CID 3024573.
  6. Jump up to:a b c Zhu, Shou-En; Yuan, Shengjun; Janssen, G. C. A. M. (1 October 2014). “Optical transmittance of multilayer graphene”. EPL108 (1): 17007. arXiv:1409.4664Bibcode:2014EL….10817007Zdoi:10.1209/0295-5075/108/17007S2CID 73626659.
  7. Jump up to:a b Lee, Changgu (2008). “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”. Science321 (385): 385–388. Bibcode:2008Sci…321..385Ldoi:10.1126/science.1157996PMID 18635798S2CID 206512830.
  8. Jump up to:a b Cao, K. (2020). “Elastic straining of free-standing monolayer graphene”Nature Communications11 (284): 284. Bibcode:2020NatCo..11..284Cdoi:10.1038/s41467-019-14130-0PMC 6962388PMID 31941941.
  9. ^ “Graphene: A Complete Chemical History”ACS Material. 20 September 2019. Retrieved 1 October 2024. In 1947, the existence of graphene was theorized by Philip R Wallace as an attempt to understand electronic properties of 3D graphite. He did not use the term “graphene”, but instead referred to it as a “single hexagonal layer.”
  10. Jump up to:a b Novoselov, K. S.; Geim, AK; Morozov, SV; Jiang, D; Zhang, Y; Dubonos, SV; Grigorieva, IV; Firsov, AA (22 October 2004). “Electric Field Effect in Atomically Thin Carbon Films”. Science306 (5696): 666–669. arXiv:cond-mat/0410550Bibcode:2004Sci…306..666Ndoi:10.1126/science.1102896PMID 15499015S2CID 5729649.
  11. Jump up to:a b “This Month in Physics History: October 22, 2004: Discovery of Graphene”APS News. Series II. 18 (9): 2. 2009. Archived from the original on 3 July 2020. Retrieved 6 October 2013.
  12. ^ “Discovery of graphene – Graphene – The University of Manchester”www.graphene.manchester.ac.uk. Retrieved 16 October 2024.
  13. ^ “The Nobel Prize in Physics 2010”. Nobel Foundation. Archived from the original on 22 May 2020. Retrieved 1 September 2021.
  14. ^ “Mass-Producing Graphene”American Scientist. 6 April 2018. Retrieved 16 October 2024.
  15. ^ Joshi, Rita (8 April 2024). “Can Graphene Be Mass Produced?”AZoNano. Retrieved 16 October 2024.
  16. ^ “Global Demand for Graphene after Commercial Production to be Enormous, says Report”. AZONANO.com. 28 February 2014. Retrieved 24 July 2014.
  17. ^ Mrmak, Nebojsa (28 November 2014). “Graphene properties (A Complete Reference)”Graphene-Battery.net. Retrieved 10 November 2019.
  18. ^ “graphene layer”IUPAC Compendium of Chemical Terminology. International Union of Pure and Applied Chemistry. 2009. doi:10.1351/goldbook.G02683ISBN 978-0-9678550-9-7. Retrieved 31 March 2012.
  19. Jump up to:a b Geim, A. (2009). “Graphene: Status and Prospects”. Science324 (5934): 1530–4. arXiv:0906.3799Bibcode:2009Sci…324.1530Gdoi:10.1126/science.1158877PMID 19541989S2CID 206513254.
  20. ^ Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. (2009). “Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation”. Physical Review Letters103 (24): 246804. arXiv:0911.1953Bibcode:2009PhRvL.103x6804Rdoi:10.1103/PhysRevLett.103.246804PMID 20366220S2CID 33832203.
  21. ^ Geim, A. K. (2012). “Graphene Prehistory”Physica ScriptaT146: 014003. Bibcode:2012PhST..146a4003Gdoi:10.1088/0031-8949/2012/T146/014003.
  22. ^ Brodie, B. C. (1859). “On the Atomic Weight of Graphite”Philosophical Transactions of the Royal Society of London149: 249–259. Bibcode:1859RSPT..149..249Bdoi:10.1098/rstl.1859.0013JSTOR 108699.
  23. ^ Debije, P; Scherrer, P (1916). “Interferenz an regellos orientierten Teilchen im Röntgenlicht I”Physikalische Zeitschrift (in German). 17: 277. Archived from the original on 14 April 2014. Retrieved 13 April 2014.
  24. ^ Debye, PeterScherrer, Paul (1917). “Über die Konstitution von Graphit und amorpher Kohle” [On the Structure of Graphite and Amorphous Carbon]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (in German). 1917: 180-188.
  25. ^ Hull, AW (1917). “A New Method of X-ray Crystal Analysis”. Phys. Rev10 (6): 661-696. Bibcode:1917PhRv…10..661Hdoi:10.1103/PhysRev.10.661.
  26. ^ Kohlschütter, V.; Haenni, P. (1919). “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure” [To the knowledge of graphitic carbon and graphitic acid]. Zeitschrift für anorganische und allgemeine Chemie (in German). 105 (1): 121–144. doi:10.1002/zaac.19191050109Archived from the original on 1 August 2020. Retrieved 12 April 2020.
  27. ^ Bernal, JD (1924). “The Structure of Graphite”Proc. R. Soc. LondA106 (740): 749–773. Bibcode:1924RSPSA.106..749Bdoi:10.1098/rspa.1924.0101JSTOR 94336.
  28. ^ Trucano, Peter; Chen, Ruey (13 November 1975). “Structure of graphite by neutron diffraction”. Nature258 (5531): 136–137. Bibcode:1975Natur.258..136Tdoi:10.1038/258136a0.
  29. ^ Howe, JY; Rawn, CJ; Jones, LE; Ow, H (June 2003). “Improved crystallographic data for graphite”. Powder Diffraction18 (2): 150–154. Bibcode:2003PDiff..18..150Hdoi:10.1154/1.1536926.
  30. Jump up to:a b c d e f Semenoff, Gordon W. (24 December 1984). “Condensed-Matter Simulation of a Three-Dimensional Anomaly”. Physical Review Letters53 (26): 2449–2452. Bibcode:1984PhRvL..53.2449Sdoi:10.1103/PhysRevLett.53.2449.
  31. ^ DiVincenzo, D. P.; Mele, E. J. (1984). “Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds”. Physical Review B295 (4): 1685–1694. Bibcode:1984PhRvB..29.1685Ddoi:10.1103/PhysRevB.29.1685.
  32. Jump up to:a b c d e f Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. (2005). “Two-dimensional gas of massless Dirac fermions in graphene”. Nature438 (7065): 197–200. arXiv:cond-mat/0509330Bibcode:2005Natur.438..197Ndoi:10.1038/nature04233PMID 16281030S2CID 3470761.
  33. Jump up to:a b Gusynin, V. P.; Sharapov, S. G. (2005). “Unconventional Integer Quantum Hall Effect in Graphene”. Physical Review Letters95 (14): 146801. arXiv:cond-mat/0506575Bibcode:2005PhRvL..95n6801Gdoi:10.1103/PhysRevLett.95.146801PMID 16241680S2CID 37267733.
  34. Jump up to:a b c Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. (2005). “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”. Nature438 (7065): 201–204. arXiv:cond-mat/0509355Bibcode:2005Natur.438..201Zdoi:10.1038/nature04235PMID 16281031S2CID 4424714.
  35. ^ Ruess, G.; Vogt, F. (1948). “Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd”. Monatshefte für Chemie (in German). 78 (3–4): 222–242. doi:10.1007/BF01141527.
  36. Jump up to:a b c d Meyer, J.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. (2007). “The structure of suspended graphene sheets”. Nature446 (7131): 60–63. arXiv:cond-mat/0701379Bibcode:2007Natur.446…60Mdoi:10.1038/nature05545PMID 17330039S2CID 3507167.
  37. Jump up to:a b Harris, Peter (12 January 2018). “Transmission Electron Microscopy of Carbon: A Brief History”C4 (1): 4. doi:10.3390/c4010004.
  38. ^ Boehm, H. P.; Clauss, A.; Fischer, G.; Hofmann, U. (1962). “Surface Properties of Extremely Thin Graphite Lamellae” (PDF). Proceedings of the Fifth Conference on CarbonPergamon Press. Archived from the original (PDF) on 13 April 2016. Retrieved 1 April 2016.
  39. ^ van Bommel, A.J.; Crombeen, J.E.; van Tooren, A. (1975). “LEED and Auger electron observations of the SiC(0001) surface”. Surface Science48 (2): 463–472. Bibcode:1975SurSc..48..463Vdoi:10.1016/0039-6028(75)90419-7.
  40. ^ Oshima, C.; Nagashima, A. (1997). “Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces”. J. Phys.: Condens. Matter9 (1): 1–20. Bibcode:1997JPCM….9….1Odoi:10.1088/0953-8984/9/1/004S2CID 250758301.
  41. ^ Forbeaux, I.; Themlin, J.-M.; Debever, J.-M. (1998). “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure”. Physical Review B58 (24): 16396–16406. Bibcode:1998PhRvB..5816396Fdoi:10.1103/PhysRevB.58.16396.
  42. ^ Boehm, H.P; Setton, R; Stumpp, E (1986). “Nomenclature and terminology of graphite intercalation compounds”. Carbon24 (2): 241–245. Bibcode:1986Carbo..24..241Bdoi:10.1016/0008-6223(86)90126-0A single carbon layer of the graphitic structure would be the final member of infinite size of this series. The term graphene layer should be used for such a single carbon layer.
  43. ^ Mouras, S.; et al. (1987). “Synthesis of first stage graphite intercalation compounds with fluorides”. Revue de Chimie Minérale24 (1): 572. Bibcode:1987JFluC..35..151Hdoi:10.1016/0022-1139(87)95120-7INIST 7578318.
  44. ^ Saito, R.; Fujita, Mitsutaka; Dresselhaus, G.; Dresselhaus, M. (1992). “Electronic structure of graphene tubules based on C60”. Physical Review B46 (3): 1804–1811. Bibcode:1992PhRvB..46.1804Sdoi:10.1103/PhysRevB.46.1804PMID 10003828.
  45. ^ Wang, S.; Yata, S.; Nagano, J.; Okano, Y.; Kinoshita, H.; Kikuta, H.; Yamabe, T. (2000). “A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries”. Journal of the Electrochemical Society147 (7): 2498. Bibcode:2000JElS..147.2498Wdoi:10.1149/1.1393559.
  46. ^ Geim, A. K.; Kim, P. (April 2008). “Carbon Wonderland”Scientific American… bits of graphene are undoubtedly present in every pencil mark
  47. ^ Robert B. Rutherford and Richard L. Dudman (2002): “Ultra-thin flexible expanded graphite heating element Archived 22 October 2020 at the Wayback Machine“. US Patent 6667100. Filed on 2002-05-13, granted on 2003-12-23, assigned to EGC Operating Co LLC; expired.
  48. ^ Bor Z. Jang and Wen C. Huang (2002): “Nano-scaled graphene plates Archived 22 October 2020 at the Wayback Machine“. US Patent 7071258. Filed on 2002-10-21, granted on 2006-07-04, assigned to Global Graphene Group Inc; to expire on 2024-01-06.
  49. ^ “Graphene edges closer to widespread production and application”www.compositesworld.com. 10 August 2016. Archived from the original on 20 September 2020. Retrieved 25 March 2022.
  50. Jump up to:a b “The Story of Graphene”www.graphene.manchester.ac.uk. The University of Manchester. 10 September 2014. Retrieved 9 October 2014. Following discussions with colleagues, Andre and Kostya adopted a method that researchers in surface science were using – using simple Sellotape to peel away layers of graphite to expose a clean surface for study under the microscope.
  51. ^ “Graphene pioneers bag Nobel prize”Institute of Physics, UK. 5 October 2010. Archived from the original on 8 October 2010. Retrieved 5 October 2010.
  52. ^ “The Nobel Prize in Physics 2010”The Nobel Foundation. Retrieved 3 December 2013.
  53. ^ “New £60m Engineering Innovation Centre to be based in Manchester”The University of Manchester. 10 September 2014.
  54. ^ Burn-Callander, Rebecca (1 July 2014). “Graphene maker aims to build British, billion-pound venture”Daily TelegraphArchived from the original on 11 January 2022. Retrieved 24 July 2014.
  55. ^ Gibson, Robert (10 June 2014). “Consett firm Thomas Swan sees export success with grapheme”. The Journal. Archived from the original on 12 July 2014. Retrieved 23 July 2014.
  56. ^ “Global breakthrough: Irish scientists discover how to mass produce ‘wonder material’ graphene”. The Journal.ie. 20 April 2014. Retrieved 20 December 2014.
  57. ^ “Cambridge Nanosystems opens new factory for commercial graphene production”Cambridge News. Archived from the original on 23 September 2015.
  58. ^ Zdetsis, Aristides D.; Economou, E. N. (23 July 2015). “A Pedestrian Approach to the Aromaticity of Graphene and Nanographene: Significance of Huckel’s (4 n +2)π Electron Rule”. The Journal of Physical Chemistry C119 (29): 16991–17003. doi:10.1021/acs.jpcc.5b04311.
  59. ^ Li, Zhilin; Chen, Lianlian; Meng, Sheng; Guo, Liwei; Huang, Jiao; Liu, Yu; Wang, Wenjun; Chen, Xiaolong (2015). “Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment”. Phys. Rev. B91 (9): 094429. Bibcode:2015PhRvB..91i4429Ldoi:10.1103/PhysRevB.91.094429S2CID 55246344.
  60. Jump up to:a b c d Cooper, Daniel R.; D’Anjou, Benjamin; Ghattamaneni, Nageswara; Harack, Benjamin; Hilke, Michael; Horth, Alexandre; Majlis, Norberto; Massicotte, Mathieu; Vandsburger, Leron; Whiteway, Eric; Yu, Victor (26 April 2012). “Experimental Review of Graphene”ISRN Condensed Matter Physics2012: 1–56. arXiv:1110.6557Bibcode:2011arXiv1110.6557Cdoi:10.5402/2012/501686S2CID 78304205.
  61. ^ Felix, I. M. (2013). “Estudo da estrutura eletrônica do grafeno e grafeno hidratado” [Study of the electronic structure of graphene and hydrated graphene] (in Portuguese). {{cite journal}}: Cite journal requires |journal= (help)
  62. ^ Dixit, Vaibhav A.; Singh, Yashita Y. (June 2019). “How much aromatic are naphthalene and graphene?”. Computational and Theoretical Chemistry1162: 112504. doi:10.1016/j.comptc.2019.112504S2CID 196975315.
  63. ^ Delhaes, Pierre (21 December 2000). Graphite and Precursors. CRC Press. ISBN 978-90-5699-228-6.
  64. ^ Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F.; Iijima, S. (2002). “Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism”. J. Phys. Chem. B106 (19): 4947–4951. doi:10.1021/jp020387n.
  65. ^ Bernatowicz; T. J.; et al. (1996). “Constraints on stellar grain formation from presolar graphite in the Murchison meteorite”Astrophysical Journal472 (2): 760–782. Bibcode:1996ApJ…472..760Bdoi:10.1086/178105.
  66. ^ Fraundorf, P.; Wackenhut, M. (2002). “The core structure of presolar graphite onions”. Astrophysical Journal Letters578 (2): L153–156. arXiv:astro-ph/0110585Bibcode:2002ApJ…578L.153Fdoi:10.1086/344633S2CID 15066112.
  67. Jump up to:a b Carlsson, J. M. (2007). “Graphene: Buckle or break”. Nature Materials6 (11): 801–2. Bibcode:2007NatMa…6..801Cdoi:10.1038/nmat2051hdl:11858/00-001M-0000-0010-FF61-1PMID 17972931.
  68. Jump up to:a b Fasolino, A.; Los, J. H.; Katsnelson, M. I. (2007). “Intrinsic ripples in graphene”. Nature Materials6 (11): 858–61. arXiv:0704.1793Bibcode:2007NatMa…6..858Fdoi:10.1038/nmat2011PMID 17891144S2CID 38264967.
  69. ^ Meyer, Jannik C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. (March 2007). “The structure of suspended graphene sheets”Nature446 (7131): 60–63. Bibcode:2007Natur.446…60Mdoi:10.1038/nature05545ISSN 1476-4687PMID 17330039.
  70. Jump up to:a b Ishigami, Masa; et al. (2007). “Atomic Structure of Graphene on SiO2“. Nano Letters7 (6): 1643–1648. arXiv:0811.0587Bibcode:2007NanoL…7.1643Idoi:10.1021/nl070613aPMID 17497819S2CID 13087073.
  71. ^ Shenderova, O. A.; Zhirnov, V. V.; Brenner, D. W. (July 2002). “Carbon Nanostructures”. Critical Reviews in Solid State and Materials Sciences27 (3–4): 227–356. Bibcode:2002CRSSM..27..227Sdoi:10.1080/10408430208500497S2CID 214615777.
  72. Jump up to:a b c d Neto, A Castro; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.; Geim, A. K. (2009). “The electronic properties of graphene” (PDF). Rev Mod Phys81 (1): 109–162. arXiv:0709.1163Bibcode:2009RvMP…81..109Cdoi:10.1103/RevModPhys.81.109hdl:10261/18097S2CID 5650871. Archived from the original (PDF) on 15 November 2010.
  73. Jump up to:a b c d Charlier, J.-C.; Eklund, P.C.; Zhu, J.; Ferrari, A.C. (2008). “Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes”. In Jorio, A.; Dresselhaus, G.; Dresselhaus, M.S. (eds.). Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Berlin/Heidelberg: Springer-Verlag. p. 673.
  74. ^ Kopelevich, Y.; Torres, J.; Da Silva, R.; Mrowka, F.; Kempa, H.; Esquinazi, P. (2003). “Reentrant Metallic Behavior of Graphite in the Quantum Limit”. Physical Review Letters90 (15): 156402. arXiv:cond-mat/0209406Bibcode:2003PhRvL..90o6402Kdoi:10.1103/PhysRevLett.90.156402PMID 12732058S2CID 26968734.
  75. ^ Luk’yanchuk, Igor A.; Kopelevich, Yakov (2004). “Phase Analysis of Quantum Oscillations in Graphite”. Physical Review Letters93 (16): 166402. arXiv:cond-mat/0402058Bibcode:2004PhRvL..93p6402Ldoi:10.1103/PhysRevLett.93.166402PMID 15525015S2CID 17130602.
  76. ^ Wallace, P.R. (1947). “The Band Theory of Graphite”. Physical Review71 (9): 622–634. Bibcode:1947PhRv…71..622Wdoi:10.1103/PhysRev.71.622S2CID 53633968.
  77. Jump up to:a b Avouris, P.; Chen, Z.; Perebeinos, V. (2007). “Carbon-based electronics”. Nature Nanotechnology2 (10): 605–15. Bibcode:2007NatNa…2..605Adoi:10.1038/nnano.2007.300PMID 18654384.
  78. ^ Lamas, C.A.; Cabra, D.C.; Grandi, N. (2009). “Generalized Pomeranchuk instabilities in graphene”. Physical Review B80 (7): 75108. arXiv:0812.4406Bibcode:2009PhRvB..80g5108Ldoi:10.1103/PhysRevB.80.075108S2CID 119213419.
  79. ^ Morozov, S.V.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.; Geim, A. (2008). “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”. Physical Review Letters100 (1): 016602. arXiv:0710.5304Bibcode:2008PhRvL.100a6602Mdoi:10.1103/PhysRevLett.100.016602PMID 18232798S2CID 3543049.
  80. Jump up to:a b c Chen, J. H.; Jang, Chaun; Xiao, Shudong; Ishigami, Masa; Fuhrer, Michael S. (2008). “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO
    2“. Nature Nanotechnology3 (4): 206–9. arXiv:0711.3646doi:10.1038/nnano.2008.58PMID 18654504S2CID 12221376.
  81. ^ Akturk, A.; Goldsman, N. (2008). “Electron transport and full-band electron-phonon interactions in graphene”. Journal of Applied Physics103 (5): 053702–053702–8. Bibcode:2008JAP…103e3702Adoi:10.1063/1.2890147.
  82. ^ Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene :: University Communications Newsdesk, University of Maryland Archived 19 September 2013 at the Wayback Machine. Newsdesk.umd.edu (24 March 2008). Retrieved on 2014-01-12.
  83. ^ Sagade, A. A.; et al. (2015). “Highly Air Stable Passivation of Graphene Based Field Effect Devices”. Nanoscale7 (8): 3558–3564. Bibcode:2015Nanos…7.3558Sdoi:10.1039/c4nr07457bPMID 25631337S2CID 24846431.
  84. ^ “Graphene Devices Stand the Test of Time”. 22 January 2015. Archived from the original on 1 August 2020. Retrieved 2 February 2020.
  85. ^ “Researchers create superconducting graphene”. 9 September 2015. Archived from the original on 7 September 2017. Retrieved 22 September 2015.
  86. Jump up to:a b “New form of graphene allows electrons to behave like photons”kurzweilai.netArchived from the original on 2 March 2014. Retrieved 27 February 2014.
  87. ^ Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A. P.; Jiang, Z.; Conrad, E. H.; Berger, C.; Tegenkamp, C.; De Heer, W. A. (2014). “Exceptional ballistic transport in epitaxial graphene nanoribbons”. Nature506 (7488): 349–354. arXiv:1301.5354Bibcode:2014Natur.506..349Bdoi:10.1038/nature12952PMID 24499819S2CID 4445858.
  88. Jump up to:a b c Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. (2008). “Charged Impurity Scattering in Graphene”. Nature Physics4 (5): 377–381. arXiv:0708.2408Bibcode:2008NatPh…4..377Cdoi:10.1038/nphys935S2CID 53419753.
  89. ^ Light pulses control how graphene conducts electricity Archived 6 November 2018 at the Wayback Machine. kurzweilai.net. 4 August 2014
  90. Jump up to:a b Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. (2007). “Detection of individual gas molecules adsorbed on graphene”. Nature Materials6 (9): 652–655. arXiv:cond-mat/0610809Bibcode:2007NatMa…6..652Sdoi:10.1038/nmat1967PMID 17660825S2CID 3518448.
  91. ^ Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. (2007). “A self-consistent theory for graphene transport”Proc. Natl. Acad. Sci. USA104 (47): 18392–7. arXiv:0705.1540Bibcode:2007PNAS..10418392Adoi:10.1073/pnas.0704772104PMC 2141788PMID 18003926.
  92. ^ Steinberg, Hadar; Barak, Gilad; Yacoby, Amir; et al. (2008). “Charge fractionalization in quantum wires (Letter)”. Nature Physics4 (2): 116–119. arXiv:0803.0744Bibcode:2008NatPh…4..116Sdoi:10.1038/nphys810S2CID 14581125.
  93. ^ Trisetyarso, Agung (2012). “Dirac four-potential tunings-based quantum transistor utilizing the Lorentz force”Quantum Information & Computation12 (11–12): 989. arXiv:1003.4590Bibcode:2010arXiv1003.4590Tdoi:10.26421/QIC12.11-12-7S2CID 28441144Archived from the original on 6 November 2018. Retrieved 6 August 2013.
  94. ^ Pachos, Jiannis K. (2009). “Manifestations of topological effects in graphene”. Contemporary Physics50 (2): 375–389. arXiv:0812.1116Bibcode:2009ConPh..50..375Pdoi:10.1080/00107510802650507S2CID 8825103.
    Franz, M. (5 January 2008). “Fractionalization of charge and statistics in graphene and related structures” (PDF). University of British Columbia. Archived from the original (PDF) on 15 November 2010. Retrieved 2 September 2009.
  95. ^ Peres, N. M. R. (15 September 2010). “Colloquium : The transport properties of graphene: An introduction”. Reviews of Modern Physics82 (3): 2673–2700. arXiv:1007.2849Bibcode:2010RvMP…82.2673Pdoi:10.1103/RevModPhys.82.2673S2CID 118585778.
  96. ^ Kim, Kuen Soo; Zhao, Yue; Jang, Houk; Lee, Sang Yoon; Kim, Jong Min; Kim, Kwang S.; Ahn, Jong-Hyun; Kim, Philip; Choi, Jae-Young; Hong, Byung Hee (2009). “Large-scale pattern growth of graphene films for stretchable transparent electrodes”. Nature457 (7230): 706–10. Bibcode:2009Natur.457..706Kdoi:10.1038/nature07719PMID 19145232S2CID 4349731.
  97. Jump up to:a b Jobst, Johannes; Waldmann, Daniel; Speck, Florian; Hirner, Roland; Maude, Duncan K.; Seyller, Thomas; Weber, Heiko B. (2009). “How Graphene-like is Epitaxial Graphene? Quantum Oscillations and Quantum Hall Effect”. Physical Review B81 (19): 195434. arXiv:0908.1900Bibcode:2010PhRvB..81s5434Jdoi:10.1103/PhysRevB.81.195434S2CID 118710923.
  98. Jump up to:a b Shen, T.; Gu, J.J.; Xu, M; Wu, Y.Q.; Bolen, M.L.; Capano, M.A.; Engel, L.W.; Ye, P.D. (2009). “Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001)”. Applied Physics Letters95 (17): 172105. arXiv:0908.3822Bibcode:2009ApPhL..95q2105Sdoi:10.1063/1.3254329S2CID 9546283.
  99. Jump up to:a b Wu, Xiaosong; Hu, Yike; Ruan, Ming; Madiomanana, Nerasoa K; Hankinson, John; Sprinkle, Mike; Berger, Claire; de Heer, Walt A. (2009). “Half integer quantum Hall effect in high mobility single layer epitaxial graphene”. Applied Physics Letters95 (22): 223108. arXiv:0909.2903Bibcode:2009ApPhL..95v3108Wdoi:10.1063/1.3266524S2CID 118422866.
  100. Jump up to:a b Lara-Avila, Samuel; Kalaboukhov, Alexei; Paolillo, Sara; Syväjärvi, Mikael; Yakimova, Rositza; Fal’ko, Vladimir; Tzalenchuk, Alexander; Kubatkin, Sergey (7 July 2009). “SiC Graphene Suitable For Quantum Hall Resistance Metrology”. Science BreviaarXiv:0909.1193Bibcode:2009arXiv0909.1193L.
  101. Jump up to:a b Alexander-Webber, J.A.; Baker, A.M.R.; Janssen, T.J.B.M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Piot, B. A.; Maude, D. K.; Nicholas, R.J. (2013). “Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene”. Physical Review Letters111 (9): 096601. arXiv:1304.4897Bibcode:2013PhRvL.111i6601Adoi:10.1103/PhysRevLett.111.096601PMID 24033057S2CID 118388086.
  102. ^ Fuhrer, Michael S. (2009). “A physicist peels back the layers of excitement about graphene”Nature459 (7250): 1037. Bibcode:2009Natur.459.1037Fdoi:10.1038/4591037ePMID 19553953S2CID 203913300.
  103. Jump up to:a b c Fuhrer, M. S. (2013). “Critical Mass in Graphene”. Science340 (6139): 1413–1414. Bibcode:2013Sci…340.1413Fdoi:10.1126/science.1240317PMID 23788788S2CID 26403885.
  104. Jump up to:a b Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y.-W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P. (2006). “Landau-Level Splitting in Graphene in High Magnetic Fields”. Physical Review Letters96 (13): 136806. arXiv:cond-mat/0602649Bibcode:2006PhRvL..96m6806Zdoi:10.1103/PhysRevLett.96.136806PMID 16712020S2CID 16445720.
  105. Jump up to:a b c d Du, X.; Skachko, Ivan; Duerr, Fabian; Luican, Adina; Andrei, Eva Y. (2009). “Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene”. Nature462 (7270): 192–195. arXiv:0910.2532Bibcode:2009Natur.462..192Ddoi:10.1038/nature08522PMID 19829294S2CID 2927627.
  106. Jump up to:a b Bolotin, K.; Ghahari, Fereshte; Shulman, Michael D.; Stormer, Horst L.; Kim, Philip (2009). “Observation of the fractional quantum Hall effect in graphene”. Nature462 (7270): 196–199. arXiv:0910.2763Bibcode:2009Natur.462..196Bdoi:10.1038/nature08582PMID 19881489S2CID 4392125.
  107. ^ Bordag, M.; Fialkovsky, I. V.; Gitman, D. M.; Vassilevich, D. V. (2009). “Casimir interaction between a perfect conductor and graphene described by the Dirac model”. Physical Review B80 (24): 245406. arXiv:0907.3242Bibcode:2009PhRvB..80x5406Bdoi:10.1103/PhysRevB.80.245406S2CID 118398377.
  108. ^ Fialkovsky, I. V.; Marachevsky, V.N.; Vassilevich, D. V. (2011). “Finite temperature Casimir effect for graphene”. Physical Review B84 (35446): 35446. arXiv:1102.1757Bibcode:2011PhRvB..84c5446Fdoi:10.1103/PhysRevB.84.035446S2CID 118473227.
  109. ^ Dobson, J. F.; White, A.; Rubio, A. (2006). “Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals”. Physical Review Letters96 (7): 073201. arXiv:cond-mat/0502422Bibcode:2006PhRvL..96g3201Ddoi:10.1103/PhysRevLett.96.073201PMID 16606085S2CID 31092090.
  110. ^ Cismaru, Alina; Dragoman, Mircea; Dinescu, Adrian; Dragoman, Daniela; Stavrinidis, G.; Konstantinidis, G. (2013). “Microwave and Millimeter-wave Electrical Permittivity of Graphene Monolayer”. arXiv:1309.0990 [cond-mat.mes-hall].
  111. ^ Kuzmenko, A. B.; Van Heumen, E.; Carbone, F.; Van Der Marel, D. (2008). “Universal infrared conductance of graphite”. Physical Review Letters100 (11): 117401. arXiv:0712.0835Bibcode:2008PhRvL.100k7401Kdoi:10.1103/PhysRevLett.100.117401PMID 18517825S2CID 17595181.
  112. ^ “Graphene Gazing Gives Glimpse Of Foundations Of Universe”ScienceDaily. 4 April 2008. Archived from the original on 6 April 2008. Retrieved 6 April 2008.
  113. ^ Jussila, Henri; Yang, He; Granqvist, Niko; Sun, Zhipei (5 February 2016). “Surface plasmon resonance for characterization of large-area atomic-layer graphene film”Optica3 (2): 151–158. Bibcode:2016Optic…3..151Jdoi:10.1364/OPTICA.3.000151.
  114. ^ Lin, Xiao; Xu, Yang; Zhang, Baile; Hao, Ran; Chen, Hongsheng; Li, Erping (2013). “Unidirectional surface plasmons in nonreciprocal graphene”New Journal of Physics15 (11): 113003. Bibcode:2013NJPh…15k3003Ldoi:10.1088/1367-2630/15/11/113003hdl:10220/17639.
  115. ^ Zhang, Y.; Tang, Tsung-Ta; Girit, Caglar; Hao, Zhao; Martin, Michael C.; Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng (11 June 2009). “Direct observation of a widely tunable bandgap in bilayer graphene”. Nature459 (7248): 820–823. Bibcode:2009Natur.459..820Zdoi:10.1038/nature08105OSTI 974550PMID 19516337S2CID 205217165.
  116. ^ Liu, Junfeng; Wright, A. R.; Zhang, Chao; Ma, Zhongshui (29 July 2008). “Strong terahertz conductance of graphene nanoribbons under a magnetic field”Appl Phys Lett93 (4): 041106–041110. Bibcode:2008ApPhL..93d1106Ldoi:10.1063/1.2964093Archived from the original on 12 June 2020. Retrieved 30 August 2019.
  117. Jump up to:a b Kurum, U.; Liu, Bo; Zhang, Kailiang; Liu, Yan; Zhang, Hao (2011). “Electrochemically tunable ultrafast optical response of graphene oxide”. Applied Physics Letters98 (2): 141103. Bibcode:2011ApPhL..98b1103Mdoi:10.1063/1.3540647.
  118. ^ Sreekanth, K.V.; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting (2012). “Excitation of surface electromagnetic waves in a graphene-based Bragg grating”Scientific Reports2: 737. Bibcode:2012NatSR…2..737Sdoi:10.1038/srep00737PMC 3471096PMID 23071901.
  119. ^ Bao, Qiaoliang; Zhang, Han; Wang, Yu; Ni, Zhenhua; Yan, Yongli; Shen, Ze Xiang; Loh, Kian Ping; Tang, Ding Yuan (9 October 2009). “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers”. Advanced Functional Materials19 (19): 3077–3083. arXiv:0910.5820Bibcode:2009arXiv0910.5820Bdoi:10.1002/adfm.200901007S2CID 59070301.
  120. ^ Zhang, H.; Tang, D. Y.; Zhao, L. M.; Bao, Q. L.; Loh, K. P. (28 September 2009). “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene”. Optics Express17 (20): 17630–17635. arXiv:0909.5536Bibcode:2009OExpr..1717630Zdoi:10.1364/OE.17.017630PMID 19907547S2CID 207313024.
  121. ^ Zhang, Han; Bao, Qiaoliang; Tang, Dingyuan; Zhao, Luming; Loh, Kianping (5 October 2009). “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker”. Applied Physics Letters95 (14): 141103. arXiv:0909.5540Bibcode:2009ApPhL..95n1103Zdoi:10.1063/1.3244206S2CID 119284608.
  122. ^ Zhang, Han; Tang, Dingyuan; Knize, R. J.; Zhao, Luming; Bao, Qiaoliang; Loh, Kian Ping (15 March 2010). “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser”. Applied Physics Letters96 (11): 111112. arXiv:1003.0154Bibcode:2010ApPhL..96k1112Zdoi:10.1063/1.3367743S2CID 119233725.
  123. ^ Zhang (2009). “Graphene: Mode-locked lasers”NPG Asia Materialsdoi:10.1038/asiamat.2009.52.
  124. ^ Zheng, Z.; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun (2012). “Microwave and optical saturable absorption in graphene”Optics Express20 (21): 23201–23214. Bibcode:2012OExpr..2023201Zdoi:10.1364/OE.20.023201PMID 23188285.
  125. ^ Zhang, H.; Virally, Stéphane; Bao, Qiaoliang; Kian Ping, Loh; Massar, Serge; Godbout, Nicolas; Kockaert, Pascal (2012). “Z-scan measurement of the nonlinear refractive index of graphene”. Optics Letters37 (11): 1856–1858. arXiv:1203.5527Bibcode:2012OptL…37.1856Zdoi:10.1364/OL.37.001856PMID 22660052S2CID 119237334.
  126. ^ Dong, H; Conti, C; Marini, A; Biancalana, F (2013). “Terahertz relativistic spatial solitons in doped graphene metamaterials”. Journal of Physics B: Atomic, Molecular and Optical Physics46 (15): 15540. arXiv:1107.5803Bibcode:2013JPhB…46o5401Ddoi:10.1088/0953-4075/46/15/155401S2CID 118338133.
  127. ^ Onida, Giovanni; Rubio, Angel (2002). “Electronic excitations: Density-functional versus many-body Green’s-function approaches” (PDF). Rev. Mod. Phys74 (2): 601–659. Bibcode:2002RvMP…74..601Odoi:10.1103/RevModPhys.74.601hdl:10261/98472Archived (PDF) from the original on 2 February 2021. Retrieved 23 September 2019.
  128. ^ Yang, Li; Deslippe, Jack; Park, Cheol-Hwan; Cohen, Marvin; Louie, Steven (2009). “Excitonic Effects on the Optical Response of Graphene and Bilayer Graphene”. Physical Review Letters103 (18): 186802. arXiv:0906.0969Bibcode:2009PhRvL.103r6802Ydoi:10.1103/PhysRevLett.103.186802PMID 19905823S2CID 36067301.
  129. ^ Prezzi, Deborah; Varsano, Daniele; Ruini, Alice; Marini, Andrea; Molinari, Elisa (2008). “Optical properties of graphene nanoribbons: The role of many-body effects”. Physical Review B77 (4): 041404. arXiv:0706.0916Bibcode:2008PhRvB..77d1404Pdoi:10.1103/PhysRevB.77.041404S2CID 73518107.
    Yang, Li; Cohen, Marvin L.; Louie, Steven G. (2007). “Excitonic Effects in the Optical Spectra of Graphene Nanoribbons”. Nano Letters7 (10): 3112–5. arXiv:0707.2983Bibcode:2007NanoL…7.3112Ydoi:10.1021/nl0716404PMID 17824720S2CID 16943236.
    Yang, Li; Cohen, Marvin L.; Louie, Steven G. (2008). “Magnetic Edge-State Excitons in Zigzag Graphene Nanoribbons”. Physical Review Letters101 (18): 186401. Bibcode:2008PhRvL.101r6401Ydoi:10.1103/PhysRevLett.101.186401PMID 18999843.
  130. ^ Zhu, Xi; Su, Haibin (2010). “Excitons of Edge and Surface Functionalized Graphene Nanoribbons”J. Phys. Chem. C114 (41): 17257–17262. doi:10.1021/jp102341bArchived from the original on 1 August 2020. Retrieved 1 December 2019.
  131. ^ Wang, Min; Li, Chang Ming (2011). “Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons”. Nanoscale3 (5): 2324–8. Bibcode:2011Nanos…3.2324Wdoi:10.1039/c1nr10095ePMID 21503364S2CID 31835103.
  132. ^ Bolmatov, Dima; Mou, Chung-Yu (2010). “Josephson effect in graphene SNS junction with a single localized defect”. Physica B405 (13): 2896–2899. arXiv:1006.1391Bibcode:2010PhyB..405.2896Bdoi:10.1016/j.physb.2010.04.015S2CID 119226501.
    Bolmatov, Dima; Mou, Chung-Yu (2010). “Tunneling conductance of the graphene SNS junction with a single localized defect”. Journal of Experimental and Theoretical Physics110 (4): 613–617. arXiv:1006.1386Bibcode:2010JETP..110..613Bdoi:10.1134/S1063776110040084S2CID 119254414.
  133. ^ Zhu, Xi; Su, Haibin (2011). “Scaling of Excitons in Graphene Nanoribbons with Armchair Shaped Edges”Journal of Physical Chemistry A115 (43): 11998–12003. Bibcode:2011JPCA..11511998Zdoi:10.1021/jp202787hPMID 21939213Archived from the original on 1 August 2020. Retrieved 1 December 2019.
  134. Jump up to:a b Tombros, Nikolaos; et al. (2007). “Electronic spin transport and spin precession in single graphene layers at room temperature”. Nature448 (7153): 571–575. arXiv:0706.1948Bibcode:2007Natur.448..571Tdoi:10.1038/nature06037PMID 17632544S2CID 4411466.
  135. Jump up to:a b Cho, Sungjae; Chen, Yung-Fu; Fuhrer, Michael S. (2007). “Gate-tunable Graphene Spin Valve”. Applied Physics Letters91 (12): 123105. arXiv:0706.1597Bibcode:2007ApPhL..91l3105Cdoi:10.1063/1.2784934S2CID 119145153.
  136. ^ Ohishi, Megumi; et al. (2007). “Spin Injection into a Graphene Thin Film at Room Temperature”. Jpn J Appl Phys46 (25): L605–L607. arXiv:0706.1451Bibcode:2007JaJAP..46L.605Odoi:10.1143/JJAP.46.L605S2CID 119608880.
  137. ^ Hashimoto, T.; Kamikawa, S.; Yagi, Y.; Haruyama, J.; Yang, H.; Chshiev, M. (2014). “Graphene edge spins: spintronics and magnetism in graphene nanomeshes” (PDF). Nanosystems: Physics, Chemistry, Mathematics5 (1): 25–38. Archived (PDF) from the original on 19 August 2019. Retrieved 2 May 2019.
  138. ^ Xin, Na; Lourembam, James; Kumaravadivel, Piranavan (April 2023). “Giant magnetoresistance of Dirac plasma in high-mobility graphene”Nature616 (7956): 270–274. arXiv:2302.06863Bibcode:2023Natur.616..270Xdoi:10.1038/s41586-023-05807-0PMC 10097601PMID 37045919.
  139. ^ T. Hashimoto, S. Kamikawa, Y. Yagi, J. Haruyama, H. Yang, M. Chshiev, “Graphene edge spins: spintronics and magnetism in graphene nanomeshes” Archived 5 May 2019 at the Wayback Machine, February 2014, Volume 5, Issue 1, pp 25
  140. ^ Coxworth, Ben (27 January 2015). “Scientists give graphene one more quality – magnetism”. Gizmag. Archived from the original on 14 July 2016. Retrieved 6 October 2016.
  141. ^ Class for Physics of the Royal Swedish Academy of Sciences (5 October 2010). “Scientific Background on the Nobel Prize in Physics 2010 GRAPHENE” (PDF). Nobel Prize. Archived from the original (PDF) on 1 July 2018.
  142. ^ Briggs, Benjamin D.; Nagabhirava, Bhaskar; Rao, Gayathri; Deer, Robert; Gao, Haiyuan; Xu, Yang; Yu, Bin (2010). “Electromechanical robustness of monolayer graphene with extreme bending”. Applied Physics Letters97 (22): 223102. Bibcode:2010ApPhL..97v3102Bdoi:10.1063/1.3519982.
  143. ^ Frank, I. W.; Tanenbaum, D. M.; Van Der Zande, A.M.; McEuen, P. L. (2007). “Mechanical properties of suspended graphene sheets” (PDF). Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures25 (6): 2558–2561. Bibcode:2007JVSTB..25.2558Fdoi:10.1116/1.2789446Archived (PDF) from the original on 11 July 2009. Retrieved 21 April 2009.
  144. ^ Braga, S.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galvão, D. S.; Baughman, R. H. (2004). “Structure and Dynamics of Carbon Nanoscrolls”. Nano Letters4 (5): 881–884. Bibcode:2004NanoL…4..881Bdoi:10.1021/nl0497272.
  145. ^ Bolmatov, Dima; Mou, Chung-Yu (2011). “Graphene-based modulation-doped superlattice structures”. Journal of Experimental and Theoretical Physics112 (1): 102–107. arXiv:1011.2850Bibcode:2011JETP..112..102Bdoi:10.1134/S1063776111010043S2CID 119223424.
  146. ^ Bolmatov, Dima (2011). “Thermodynamic properties of tunneling quasiparticles in graphene-based structures”. Physica C471 (23–24): 1651–1654. arXiv:1106.6331Bibcode:2011PhyC..471.1651Bdoi:10.1016/j.physc.2011.07.008S2CID 118596336.
  147. ^ Grima, J. N.; Winczewski, S.; Mizzi, L.; Grech, M. C.; Cauchi, R.; Gatt, R.; Attard, D.; Wojciechowski, K.W.; Rybicki, J. (2014). “Tailoring Graphene to Achieve Negative Poisson’s Ratio Properties”. Advanced Materials27 (8): 1455–1459. doi:10.1002/adma.201404106PMID 25504060S2CID 19738771.
  148. ^ Ren, Zhaodi; Meng, Nan; Shehzad, Khurram; Xu, Yang; Qu, Shaoxing; Yu, Bin; Luo, Jack (2015). “Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition” (PDF). Nanotechnology26 (6): 065706. Bibcode:2015Nanot..26f5706Rdoi:10.1088/0957-4484/26/6/065706PMID 25605375S2CID 9501340. Archived from the original (PDF) on 27 October 2020. Retrieved 7 January 2020.
  149. ^ Zhang, Peng; Ma, Lulu; Fan, Feifei; Zeng, Zhi; Peng, Cheng; Loya, Phillip E.; Liu, Zheng; Gong, Yongji; Zhang, Jiangnan; Zhang, Xingxiang; Ajayan, Pulickel M.; Zhu, Ting; Lou, Jun (2014). “Fracture toughness of graphene”Nature Communications5: 3782. Bibcode:2014NatCo…5.3782Zdoi:10.1038/ncomms4782PMID 24777167.
  150. ^ Dorrieron, Jason (4 December 2014). “Graphene Armor Would Be Light, Flexible and Far Stronger Than Steel”Singularity HubArchived from the original on 30 August 2016. Retrieved 6 October 2016.
  151. ^ Coxworth, Ben (1 December 2014). “Graphene could find use in lightweight ballistic body armor”GizmagArchived from the original on 23 July 2016. Retrieved 6 October 2016.
  152. ^ Papageorgiou, Dimitrios G.; Kinloch, Ian A.; Young, Robert J. (October 2017). “Mechanical properties of graphene and graphene-based nanocomposites”Progress in Materials Science90: 75–127. doi:10.1016/j.pmatsci.2017.07.004.
  153. ^ Li, J.C.M. (June 1972). “Disclination model of high angle grain boundaries”. Surface Science31: 12–26. Bibcode:1972SurSc..31…12Ldoi:10.1016/0039-6028(72)90251-8.
  154. ^ Grantab, R.; Shenoy, V. B.; Ruoff, R. S. (12 November 2010). “Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene”. Science330 (6006): 946–948. arXiv:1007.4985Bibcode:2010Sci…330..946Gdoi:10.1126/science.1196893PMID 21071664S2CID 12301209.
  155. ^ Wei, Yujie; Wu, Jiangtao; Yin, Hanqing; Shi, Xinghua; Yang, Ronggui; Dresselhaus, Mildred (September 2012). “The nature of strength enhancement and weakening by pentagon–heptagon defects in graphene”Nature Materials11 (9): 759–763. Bibcode:2012NatMa..11..759Wdoi:10.1038/nmat3370PMID 22751178Archived from the original on 22 November 2019. Retrieved 30 August 2019.
  156. ^ Lee, G.-H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W.; Kysar, J. W.; Hone, J. (31 May 2013). “High-Strength Chemical-Vapor-Deposited Graphene and Grain Boundaries”. Science340 (6136): 1073–1076. Bibcode:2013Sci…340.1073Ldoi:10.1126/science.1235126PMID 23723231S2CID 35277622.
  157. ^ Rasool, Haider I.; Ophus, Colin; Klug, William S.; Zettl, A.; Gimzewski, James K. (December 2013). “Measurement of the intrinsic strength of crystalline and polycrystalline graphene”Nature Communications4 (1): 2811. Bibcode:2013NatCo…4.2811Rdoi:10.1038/ncomms3811.
  158. Jump up to:a b Zhang, Teng; Li, Xiaoyan; Gao, Huajian (November 2015). “Fracture of graphene: a review”. International Journal of Fracture196 (1–2): 1–31. doi:10.1007/s10704-015-0039-9S2CID 135899138.
  159. ^ Akinwande, Deji; Brennan, Christopher J.; Bunch, J. Scott; Egberts, Philip; Felts, Jonathan R.; Gao, Huajian; Huang, Rui; Kim, Joon-Seok; Li, Teng; Li, Yao; Liechti, Kenneth M.; Lu, Nanshu; Park, Harold S.; Reed, Evan J.; Wang, Peng; Yakobson, Boris I.; Zhang, Teng; Zhang, Yong-Wei; Zhou, Yao; Zhu, Yong (May 2017). “A review on mechanics and mechanical properties of 2D materials—Graphene and beyond”. Extreme Mechanics Letters13: 42–77. arXiv:1611.01555Bibcode:2017ExML…13…42Adoi:10.1016/j.eml.2017.01.008S2CID 286118.
  160. Jump up to:a b Isacsson, Andreas; Cummings, Aron W; Colombo, Luciano; Colombo, Luigi; Kinaret, Jari M; Roche, Stephan (19 December 2016). “Scaling properties of polycrystalline graphene: a review”. 2D Materials4 (1): 012002. arXiv:1612.01727doi:10.1088/2053-1583/aa5147S2CID 118840850.
  161. Jump up to:a b Kotakoski, Jani; Meyer, Jannik C. (24 May 2012). “Mechanical properties of polycrystalline graphene based on a realistic atomistic model”. Physical Review B85 (19): 195447. arXiv:1203.4196Bibcode:2012PhRvB..85s5447Kdoi:10.1103/PhysRevB.85.195447S2CID 118835225.
  162. Jump up to:a b Song, Zhigong; Artyukhov, Vasilii I.; Yakobson, Boris I.; Xu, Zhiping (10 April 2013). “Pseudo Hall–Petch Strength Reduction in Polycrystalline Graphene”. Nano Letters13 (4): 1829–1833. Bibcode:2013NanoL..13.1829Sdoi:10.1021/nl400542nPMID 23528068.
  163. Jump up to:a b Sha, Z. D.; Quek, S. S.; Pei, Q. X.; Liu, Z. S.; Wang, T. J.; Shenoy, V. B.; Zhang, Y. W. (May 2015). “Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene”Scientific Reports4 (1): 5991. Bibcode:2014NatSR…4.5991Sdoi:10.1038/srep05991PMC 4125985PMID 25103818.
  164. ^ Berber, Savas; Kwon, Young-Kyun; Tománek, David (2000). “Unusually High Thermal Conductivity of Carbon Nanotubes”. Phys. Rev. Lett84 (20): 4613–6. arXiv:cond-mat/0002414Bibcode:2000PhRvL..84.4613Bdoi:10.1103/PhysRevLett.84.4613PMID 10990753S2CID 9006722.
  165. Jump up to:a b Balandin, A. A.; Ghosh, Suchismita; Bao, Wenzhong; Calizo, Irene; Teweldebrhan, Desalegne; Miao, Feng; Lau, Chun Ning (20 February 2008). “Superior Thermal Conductivity of Single-Layer Graphene”. Nano Letters8 (3): 902–907. Bibcode:2008NanoL…8..902Bdoi:10.1021/nl0731872PMID 18284217S2CID 9310741.
  166. ^ Y S. Touloukian (1970). Thermophysical Properties of Matter: Thermal conductivity: nonmetallic solids. IFI/Plenum. ISBN 978-0-306-67020-6.
  167. ^ Cai, Weiwei; Moore, Arden L.; Zhu, Yanwu; Li, Xuesong; Chen, Shanshan; Shi, Li; Ruoff, Rodney S. (2010). “Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition”. Nano Letters10 (5): 1645–1651. Bibcode:2010NanoL..10.1645Cdoi:10.1021/nl9041966PMID 20405895S2CID 207664146.
  168. ^ Faugeras, Clement; Faugeras, Blaise; Orlita, Milan; Potemski, M.; Nair, Rahul R.; Geim, A. K. (2010). “Thermal Conductivity of Graphene in Corbino Membrane Geometry”. ACS Nano4 (4): 1889–1892. arXiv:1003.3579Bibcode:2010arXiv1003.3579Fdoi:10.1021/nn9016229PMID 20218666S2CID 207558462.
  169. ^ Xu, Xiangfan; Pereira, Luiz F. C.; Wang, Yu; Wu, Jing; Zhang, Kaiwen; Zhao, Xiangming; Bae, Sukang; Tinh Bui, Cong; Xie, Rongguo; Thong, John T. L.; Hong, Byung Hee; Loh, Kian Ping; Donadio, Davide; Li, Baowen; Özyilmaz, Barbaros (2014). “Length-dependent thermal conductivity in suspended single-layer graphene”. Nature Communications5: 3689. arXiv:1404.5379Bibcode:2014NatCo…5.3689Xdoi:10.1038/ncomms4689PMID 24736666S2CID 10617464.
  170. ^ Lee, Jae-Ung; Yoon, Duhee; Kim, Hakseong; Lee, Sang Wook; Cheong, Hyeonsik (2011). “Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy”. Physical Review B83 (8): 081419. arXiv:1103.3337Bibcode:2011PhRvB..83h1419Ldoi:10.1103/PhysRevB.83.081419S2CID 118664500.
  171. ^ Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. (2010). “Two-Dimensional Phonon Transport in Supported Graphene”Science328 (5975): 213–216. Bibcode:2010Sci…328..213Sdoi:10.1126/science.1184014PMID 20378814S2CID 213783Archived from the original on 4 February 2023. Retrieved 28 January 2023.
  172. ^ Klemens, P. G. (2001). “Theory of Thermal Conduction in Thin Ceramic Films”. International Journal of Thermophysics22 (1): 265–275. doi:10.1023/A:1006776107140S2CID 115849714.
  173. ^ Jang, Wanyoung; Chen, Zhen; Bao, Wenzhong; Lau, Chun Ning; Dames, Chris (2010). “Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite”. Nano Letters10 (10): 3909–3913. Bibcode:2010NanoL..10.3909Jdoi:10.1021/nl101613uPMID 20836537S2CID 45253497.
  174. ^ Pettes, Michael Thompson; Jo, Insun; Yao, Zhen; Shi, Li (2011). “Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene”. Nano Letters11 (3): 1195–1200. Bibcode:2011NanoL..11.1195Pdoi:10.1021/nl104156yPMID 21314164.
  175. ^ Chen, Shanshan; Wu, Qingzhi; Mishra, Columbia; Kang, Junyong; Zhang, Hengji; Cho, Kyeongjae; Cai, Weiwei; Balandin, Alexander A.; Ruoff, Rodney S. (2012). “Thermal conductivity of isotopically modified graphene”. Nature Materials11 (3) (published 10 January 2012): 203–207. arXiv:1112.5752Bibcode:2012NatMa..11..203Cdoi:10.1038/nmat3207PMID 22231598S2CID 119228971.
    Lay summary: Tracy, Suzanne (12 January 2012). “Keeping Electronics Cool”Scientific ComputingAdvantage Business Media. scientificcomputing.com.
  176. ^ Saito, K.; Nakamura, J.; Natori, A. (2007). “Ballistic thermal conductance of a graphene sheet”. Physical Review B76 (11): 115409. Bibcode:2007PhRvB..76k5409Sdoi:10.1103/PhysRevB.76.115409.
  177. ^ Liang, Qizhen; Yao, Xuxia; Wang, Wei; Liu, Yan; Wong, Ching Ping (2011). “A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials”ACS Nano5 (3): 2392–2401. doi:10.1021/nn200181ePMID 21384860Archived from the original on 1 August 2020. Retrieved 1 December 2019.
  178. ^ Delhaes, P. (2001). Graphite and Precursors. CRC Press. ISBN 978-90-5699-228-6.
  179. Jump up to:a b Mingo, N.; Broido, D.A. (2005). “Carbon Nanotube Ballistic Thermal Conductance and Its Limits”. Physical Review Letters95 (9): 096105. Bibcode:2005PhRvL..95i6105Mdoi:10.1103/PhysRevLett.95.096105PMID 16197233.
  180. ^ Mounet, N.; Marzari, N. (2005). “First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives”. Physical Review B71 (20): 205214. arXiv:cond-mat/0412643Bibcode:2005PhRvB..71t5214Mdoi:10.1103/PhysRevB.71.205214S2CID 119461729.
  181. ^ Lifshitz, I.M. (1952). Journal of Experimental and Theoretical Physics (in Russian). Vol. 22. p. 475.
  182. ^ Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. (2015). “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage”. Science347 (6217): 1246501. Bibcode:2015Sci…347…41Bdoi:10.1126/science.1246501PMID 25554791S2CID 6655234.
  183. ^ Denis, P. A.; Iribarne, F. (2013). “Comparative Study of Defect Reactivity in Graphene”. Journal of Physical Chemistry C117 (37): 19048–19055. doi:10.1021/jp4061945.
  184. ^ Yamada, Y.; Murota, K; Fujita, R; Kim, J; et al. (2014). “Subnanometer vacancy defects introduced on graphene by oxygen gas”. Journal of the American Chemical Society136 (6): 2232–2235. Bibcode:2014JAChS.136.2232Ydoi:10.1021/ja4117268PMID 24460150S2CID 12628957.
  185. ^ Eftekhari, A.; Jafarkhani, P. (2013). “Curly Graphene with Specious Interlayers Displaying Superior Capacity for Hydrogen Storage”. Journal of Physical Chemistry C117 (48): 25845–25851. doi:10.1021/jp410044v.
  186. ^ Yamada, Y.; Yasuda, H.; Murota, K.; Nakamura, M.; Sodesawa, T.; Sato, S. (2013). “Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy”. Journal of Materials Science48 (23): 8171–8198. Bibcode:2013JMatS..48.8171Ydoi:10.1007/s10853-013-7630-0S2CID 96586004.
  187. ^ Yamada, Y.; Kim, J.; Murota, K.; Matsuo, S.; Sato, S. (2014). “Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy”. Carbon70: 59–74. Bibcode:2014Carbo..70…59Ydoi:10.1016/j.carbon.2013.12.061.
  188. ^ “Thinnest graphene sheets react strongly with hydrogen atoms; thicker sheets are relatively unaffected”Phys.org. 1 February 2013. Archived from the original on 24 September 2018. Retrieved 14 December 2013.
  189. ^ Zan, Recep; Ramasse, Quentin M.; Bangert, Ursel; Novoselov, Konstantin S. (2012). “Graphene Reknits Its Holes”. Nano Letters12 (8): 3936–3940. arXiv:1207.1487Bibcode:2012NanoL..12.3936Zdoi:10.1021/nl300985qPMID 22765872S2CID 11008306.
  190. ^ Bonaccorso, Francesco; Colombo, Luigi; Yu, Guihua; Stoller, Meryl; Tozzini, Valentina; Ferrari, Andrea C.; Ruoff, Rodney S.; Pellegrini, Vittorio (2 January 2015). “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage”. Science347 (6217): 1246501. Bibcode:2015Sci…347…41Bdoi:10.1126/science.1246501PMID 25554791S2CID 6655234.
  191. ^ Bullock, Christopher J.; Bussy, Cyrill (18 April 2019). “Biocompatibility Considerations in the Design of Graphene Biomedical Materials”Advanced Materials Interfaces6 (11): 1900229. doi:10.1002/admi.201900229.
  192. ^ Liao, Ken-Hsuan; Lin, Yu-Shen; Macosko, Christopher W.; Haynes, Christy L. (27 July 2011). “Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts”. ACS Applied Materials & Interfaces3 (7): 2607–2615. doi:10.1021/am200428vPMID 21650218.
  193. ^ Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C.; Ballerini, Laura; Prato, Maurizio (26 January 2016). “Graphene-Based Interfaces Do Not Alter Target Nerve Cells”. ACS Nano10 (1): 615–623. doi:10.1021/acsnano.5b05647hdl:11368/2860012PMID 26700626.
  194. ^ “Graphene shown to safely interact with neurons in the brain”University of Cambridge. 29 January 2016. Archived from the original on 23 February 2016. Retrieved 16 February 2016.
  195. ^ Nayak, Tapas R.; Andersen, Henrik; Makam, Venkata S.; Khaw, Clement; Bae, Sukang; Xu, Xiangfan; Ee, Pui-Lai R.; Ahn, Jong-Hyun; Hong, Byung Hee; Pastorin, Giorgia; Özyilmaz, Barbaros (28 June 2011). “Graphene for Controlled and Accelerated Osteogenic Differentiation of Human Mesenchymal Stem Cells”. ACS Nano5 (6): 4670–4678. arXiv:1104.5120Bibcode:2011arXiv1104.5120Ndoi:10.1021/nn200500hPMID 21528849S2CID 20794090.
  196. ^ Tehrani, Z. (1 September 2014). “Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker” (PDF). 2D Materials1 (2): 025004. Bibcode:2014TDM…..1b5004Tdoi:10.1088/2053-1583/1/2/025004S2CID 55035225Archived (PDF) from the original on 1 August 2020. Retrieved 7 January 2020.
  197. ^ Xu, Yang; He, K. T.; Schmucker, S. W.; Guo, Z.; Koepke, J. C.; Wood, J. D.; Lyding, J. W.; Aluru, N. R. (2011). “Inducing Electronic Changes in Graphene through Silicon (100) Substrate Modification”. Nano Letters11 (7): 2735–2742. Bibcode:2011NanoL..11.2735Xdoi:10.1021/nl201022tPMID 21661740S2CID 207573621.
  198. ^ Kula, Piotr; Pietrasik, Robert; Dybowski, Konrad; Atraszkiewicz, Radomir; Szymanski, Witold; Kolodziejczyk, Lukasz; Niedzielski, Piotr; Nowak, Dorota (2014). “Single and Multilayer Growth of Graphene from the Liquid Phase”. Applied Mechanics and Materials510: 8–12. doi:10.4028/www.scientific.net/AMM.510.8S2CID 93345920.
  199. ^ “Polish scientists find way to make super-strong graphene sheets | Graphene-Info”www.graphene-info.comArchived from the original on 1 July 2015. Retrieved 1 July 2015.
  200. ^ Montenegro, Angelo; Dutta, Chayan; Mammetkuliev, Muhammet; Shi, Haotian; Hou, Bingya; Bhattacharyya, Dhritiman; Zhao, Bofan; Cronin, Stephen B.; Benderskii, Alexander V. (3 June 2021). “Asymmetric response of interfacial water to applied electric fields”. Nature594 (7861): 62–65. Bibcode:2021Natur.594…62Mdoi:10.1038/s41586-021-03504-4PMID 34079138S2CID 235321882.
  201. ^ Min, Hongki; Sahu, Bhagawan; Banerjee, Sanjay; MacDonald, A. (2007). “Ab initio theory of gate induced gaps in graphene bilayers”. Physical Review B75 (15): 155115. arXiv:cond-mat/0612236Bibcode:2007PhRvB..75o5115Mdoi:10.1103/PhysRevB.75.155115S2CID 119443126.
  202. ^ Barlas, Yafis; Côté, R.; Lambert, J.; MacDonald, A. H. (2010). “Anomalous Exciton Condensation in Graphene Bilayers”. Physical Review Letters104 (9): 96802. arXiv:0909.1502Bibcode:2010PhRvL.104i6802Bdoi:10.1103/PhysRevLett.104.096802PMID 20367001S2CID 33249360.
  203. Jump up to:a b Min, Lola; Hovden, Robert; Huang, Pinshane; Wojcik, Michal; Muller, David A.; Park, Jiwoong (2012). “Twinning and Twisting of Tri- and Bilayer Graphene”. Nano Letters12 (3): 1609–1615. Bibcode:2012NanoL..12.1609Bdoi:10.1021/nl204547vPMID 22329410S2CID 896422.
  204. ^ Forestier, Alexis; Balima, Félix; Bousige, Colin; de Sousa Pinheiro, Gardênia; Fulcrand, Rémy; Kalbác, Martin; San-Miguel, Alfonso (28 April 2020). “Strain and Piezo-Doping Mismatch between Graphene Layers”J. Phys. Chem. C124 (20): 11193. doi:10.1021/acs.jpcc.0c01898S2CID 219011027Archived from the original on 29 April 2021. Retrieved 21 December 2020.
  205. Jump up to:a b Luong, Duy X.; Bets, Ksenia V.; Algozeeb, Wala Ali; Stanford, Michael G.; Kittrell, Carter; Chen, Weiyin; Salvatierra, Rodrigo V.; Ren, Muqing; McHugh, Emily A.; Advincula, Paul A.; Wang, Zhe (January 2020). “Gram-scale bottom-up flash graphene synthesis”Nature577 (7792): 647–651. Bibcode:2020Natur.577..647Ldoi:10.1038/s41586-020-1938-0ISSN 1476-4687PMID 31988511S2CID 210926149Archived from the original on 20 October 2021. Retrieved 16 October 2021.
  206. ^ Stanford, Michael G.; Bets, Ksenia V.; Luong, Duy X.; Advincula, Paul A.; Chen, Weiyin; Li, John Tianci; Wang, Zhe; McHugh, Emily A.; Algozeeb, Wala A.; Yakobson, Boris I.; Tour, James M. (27 October 2020). “Flash Graphene Morphologies”ACS Nano14 (10): 13691–13699. doi:10.1021/acsnano.0c05900ISSN 1936-0851OSTI 1798502PMID 32909736S2CID 221623214.
  207. ^ Xu, Yang; Liu, Yunlong; Chen, Huabin; Lin, Xiao; Lin, Shisheng; Yu, Bin; Luo, Jikui (2012). “Ab initio study of energy-band modulation in graphene-based two-dimensional layered superlattices”. Journal of Materials Chemistry22 (45): 23821. doi:10.1039/C2JM35652J.
  208. ^ Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M. (February 2013). “In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes”Nature Nanotechnology8 (2): 119–124. Bibcode:2013NatNa…8..119Ldoi:10.1038/nnano.2012.256PMID 23353677Archived from the original on 7 April 2023. Retrieved 1 December 2020.
  209. ^ Felix, Isaac M.; Pereira, Luiz Felipe C. (9 February 2018). “Thermal Conductivity of Graphene-hBN Superlattice Ribbons”Scientific Reports8 (1): 2737. Bibcode:2018NatSR…8.2737Fdoi:10.1038/s41598-018-20997-8PMC 5807325PMID 29426893.
  210. ^ Felix, Isaac M.; Pereira, Luiz Felipe C. (April 2020). “Suppression of coherent thermal transport in quasiperiodic graphene-hBN superlattice ribbons”Carbon160: 335–341. arXiv:2001.03072Bibcode:2020Carbo.160..335Fdoi:10.1016/j.carbon.2019.12.090S2CID 210116531.
  211. ^ Felix, Isaac M.; Pereira, Luiz Felipe C. (1 May 2022). “Thermal conductivity of Thue–Morse and double-period quasiperiodic graphene-hBN superlattices”International Journal of Heat and Mass Transfer186: 122464. Bibcode:2022IJHMT.18622464Fdoi:10.1016/j.ijheatmasstransfer.2021.122464S2CID 245712349Archived from the original on 6 January 2022. Retrieved 6 January 2022.
  212. ^ Félix, Isaac de Macêdo (29 March 2016). Transporte térmico em nanofitas de grafeno-nitreto de boro (masterThesis). Brasil. Archived from the original on 5 March 2022. Retrieved 6 January 2022.
  213. ^ Félix, Isaac de Macêdo (4 August 2020). Condução de calor em nanofitas quase-periódicas de grafeno-hBN (doctoralThesis) (in Brazilian Portuguese). Universidade Federal do Rio Grande do Norte. Archived from the original on 2 February 2021. Retrieved 1 December 2020.  Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License Archived 16 October 2017 at the Wayback Machine.
  214. Jump up to:a b Tang, Libin; Ji, Rongbin; Cao, Xiangke; Lin, Jingyu; Jiang, Hongxing; Li, Xueming; Teng, Kar Seng; Luk, Chi Man; Zeng, Songjun; Hao, Jianhua; Lau, Shu Ping (2014). “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots”. ACS Nano8 (6): 6312–6320. doi:10.1021/nn300760gPMID 22559247S2CID 9055313.
  215. Jump up to:a b Tang, Libin; Ji, Rongbin; Li, Xueming; Bai, Gongxun; Liu, Chao Ping; Hao, Jianhua; Lin, Jingyu; Jiang, Hongxing; Teng, Kar Seng; Yang, Zhibin; Lau, Shu Ping (2012). “Deep Ultraviolet to Near-Infrared Emission and Photoresponse in Layered N-Doped Graphene Quantum Dots”ACS Nano8 (6): 5102–5110. doi:10.1021/nn501796rPMID 24848545.
  216. ^ Tang, Libin; Ji, Rongbin; Li, Xueming; Teng, Kar Seng; Lau, Shu Ping (2013). “Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots”. Particle & Particle Systems Characterization30 (6): 523–531. doi:10.1002/ppsc.201200131hdl:10397/32222S2CID 96410135.
  217. ^ Marcano, Daniela C.; Kosynkin, Dmitry V.; Berlin, Jacob M.; Sinitskii, Alexander; Sun, Zhengzong; Slesarev, Alexander; Alemany, Lawrence B.; Lu, Wei; Tour, James M. (24 August 2010). “Improved Synthesis of Graphene Oxide”ACS Nano4 (8): 4806–4814. doi:10.1021/nn1006368ISSN 1936-0851PMID 20731455.
  218. ^ “Graphene Oxide Paper”. Northwestern University. Archived from the original on 2 June 2016. Retrieved 28 February 2011.
  219. ^ Eftekhari, Ali; Yazdani, Bahareh (2010). “Initiating electropolymerization on graphene sheets in graphite oxide structure”. Journal of Polymer Science Part A: Polymer Chemistry48 (10): 2204–2213. Bibcode:2010JPoSA..48.2204Edoi:10.1002/pola.23990.
  220. ^ Nalla, Venkatram; Polavarapu, L; Manga, KK; Goh, BM; Loh, KP; Xu, QH; Ji, W (2010). “Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer–graphene oxide composite”. Nanotechnology21 (41): 415203. Bibcode:2010Nanot..21O5203Ndoi:10.1088/0957-4484/21/41/415203PMID 20852355S2CID 24385952.
  221. ^ Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. (2012). “Unimpeded permeation of water through helium-leak-tight graphene-based membranes”. Science335 (6067): 442–4. arXiv:1112.3488Bibcode:2012Sci…335..442Ndoi:10.1126/science.1211694PMID 22282806S2CID 15204080.
  222. ^ Strilbytska, Olha; Semaniuk, Uliana; Burdyliuk, Nadia; Lushchak, Oleh (2022). “Evaluation of biological effects of graphene oxide using Drosophila”Physics and Chemistry of Solid State2 (23): 242–248. doi:10.15330/pcss.23.2.242-248S2CID 248823106Archived from the original on 6 February 2023. Retrieved 6 February 2023.
  223. ^ Niyogi, Sandip; Bekyarova, Elena; Itkis, Mikhail E.; McWilliams, Jared L.; Hamon, Mark A.; Haddon, Robert C. (2006). “Solution Properties of Graphite and Graphene”. J. Am. Chem. Soc. 128 (24): 7720–7721. Bibcode:2006JAChS.128.7720Ndoi:10.1021/ja060680rPMID 16771469.
  224. ^ Whitby, Raymond L.D.; Korobeinyk, Alina; Glevatska, Katya V. (2011). “Morphological changes and covalent reactivity assessment of single-layer graphene oxides under carboxylic group-targeted chemistry”. Carbon49 (2): 722–725. Bibcode:2011Carbo..49..722Wdoi:10.1016/j.carbon.2010.09.049.
  225. ^ Park, Sungjin; Dikin, Dmitriy A.; Nguyen, SonBinh T.; Ruoff, Rodney S. (2009). “Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine”. J. Phys. Chem. C113 (36): 15801–15804. doi:10.1021/jp907613sS2CID 55033112.
  226. ^ Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S. (2009). “Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane”. Science323 (5914): 610–3. arXiv:0810.4706Bibcode:2009Sci…323..610Edoi:10.1126/science.1167130PMID 19179524S2CID 3536592.
  227. ^ Garcia, J. C.; de Lima, D. B.; Assali, L. V. C.; Justo, J. F. (2011). “Group IV graphene- and graphane-like nanosheets”. J. Phys. Chem. C115 (27): 13242–13246. arXiv:1204.2875doi:10.1021/jp203657wS2CID 98682200.
  228. ^ Yamada, Y.; Miyauchi, M.; Kim, J.; Hirose-Takai, K.; Sato, Y.; Suenaga, K.; Ohba, T.; Sodesawa, T.; Sato, S. (2011). “Exfoliated graphene ligands stabilizing copper cations”. Carbon49 (10): 3375–3378. Bibcode:2011Carbo..49.3375Ydoi:10.1016/j.carbon.2011.03.056.
    Yamada, Y.; Miyauchi, M.; Jungpil, K.; et al. (2011). “Exfoliated graphene ligands stabilizing copper cations”. Carbon49 (10): 3375–3378. Bibcode:2011Carbo..49.3375Ydoi:10.1016/j.carbon.2011.03.056.
  229. ^ Yamada, Y.; Suzuki, Y.; Yasuda, H.; Uchizawa, S.; Hirose-Takai, K.; Sato, Y.; Suenaga, K.; Sato, S. (2014). “Functionalized graphene sheets coordinating metal cations”. Carbon75: 81–94. Bibcode:2014Carbo..75…81Ydoi:10.1016/j.carbon.2014.03.036.
    Yamada, Y.; Suzuki, Y.; Yasuda, H.; et al. (2014). “Functionalized graphene sheets coordinating metal cations”. Carbon75: 81–94. Bibcode:2014Carbo..75…81Ydoi:10.1016/j.carbon.2014.03.036.
  230. ^ Li, Xinming; Zhao, Tianshuo; Wang, Kunlin; Yang, Ying; Wei, Jinquan; Kang, Feiyu; Wu, Dehai; Zhu, Hongwei (29 August 2011). “Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiber from Chemical Vapor Deposition Grown Graphene Film and Its Electrochemical Properties”Langmuir27 (19): 12164–71. doi:10.1021/la202380gPMID 21875131Archived from the original on 1 August 2020. Retrieved 1 December 2019.
  231. ^ Li, Xinming; Zhao, Tianshuo; Chen, Qiao; Li, Peixu; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Wei, Bingqing; Zhu, Hongwei (3 September 2013). “Flexible all-solid-state supercapacitors based on chemical vapor deposition derived graphene fibers”. Physical Chemistry Chemical Physics15 (41): 17752–7. Bibcode:2013PCCP…1517752Ldoi:10.1039/C3CP52908HPMID 24045695S2CID 22426420.
  232. ^ Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie (4 September 2015). “Highly thermally conductive and mechanically strong graphene fibers”Science349 (6252): 1083–1087. Bibcode:2015Sci…349.1083Xdoi:10.1126/science.aaa6502PMID 26339027.
  233. ^ Xu, Zhen; Liu, Yingjun; Zhao, Xiaoli; Li, Peng; Sun, Haiyan; Xu, Yang; Ren, Xibiao; Jin, Chuanhong; Xu, Peng; Wang, Miao; Gao, Chao (2016). “Ultrastiff and Strong Graphene Fibers via Full-Scale Synergetic Defect Engineering”. Advanced Materials28 (30): 6449–6456. Bibcode:2016AdM….28.6449Xdoi:10.1002/adma.201506426PMID 27184960S2CID 31988847.
  234. ^ Bai, Yunxiang; Zhang, Rufan; Ye, Xuan; Zhu, Zhenxing; Xie, Huanhuan; Shen, Boyuan; Cai, Dali; Liu, Bofei; Zhang, Chenxi; Jia, Zhao; Zhang, Shenli; Li, Xide; Wei, Fei (2018). “Carbon nanotube bundles with tensile strength over 80 GPa”. Nature Nanotechnology13 (7): 589–595. Bibcode:2018NatNa..13..589Bdoi:10.1038/s41565-018-0141-zPMID 29760522S2CID 46890587.
  235. ^ Wang, H.; Sun, K.; Tao, F.; Stacchiola, D. J.; Hu, Y. H. (2013). “3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells”. Angewandte Chemie125 (35): 9380–9384. Bibcode:2013AngCh.125.9380Wdoi:10.1002/ange.201303497hdl:2027.42/99684PMID 23897636.
    Wang, Hui; Sun, Kai; Tao, Franklin; Stacchiola, Dario J.; Hu, Yun Hang (2013). “3D graphene could replace expensive platinum in solar cells”Angewandte Chemie125 (35). KurzweilAI: 9380–9384. Bibcode:2013AngCh.125.9380Wdoi:10.1002/ange.201303497hdl:2027.42/99684Archived from the original on 25 August 2013. Retrieved 24 August 2013.
  236. Jump up to:a b c Shehzad, Khurram; Xu, Yang; Gao, Chao; Xianfeng, Duan (2016). “Three-dimensional macro-structures of two-dimensional nanomaterials”. Chemical Society Reviews45 (20): 5541–5588. doi:10.1039/C6CS00218HPMID 27459895.
  237. ^ Lalwani, Gaurav; Trinward Kwaczala, Andrea; Kanakia, Shruti; Patel, Sunny C.; Judex, Stefan; Sitharaman, Balaji (2013). “Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds”Carbon53: 90–100. doi:10.1016/j.carbon.2012.10.035PMC 3578711PMID 23436939.
  238. ^ Lalwani, Gaurav; Gopalan, Anu Gopalan; D’Agati, Michael; Srinivas Sankaran, Jeyantt; Judex, Stefan; Qin, Yi-Xian; Sitharaman, Balaji (2015). “Porous three-dimensional carbon nanotube scaffolds for tissue engineering”Journal of Biomedical Materials Research Part A103 (10): 3212–3225. doi:10.1002/jbm.a.35449PMC 4552611PMID 25788440.
  239. Jump up to:a b Lapshin, Rostislav V. (January 2016). “STM observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite”. Applied Surface Science360: 451–460. arXiv:1611.04379Bibcode:2016ApSS..360..451Ldoi:10.1016/j.apsusc.2015.09.222S2CID 119369379.
  240. ^ Harris PJF (2012). “Hollow structures with bilayer graphene walls”Carbon50 (9): 3195–3199. Bibcode:2012Carbo..50.3195Hdoi:10.1016/j.carbon.2011.10.050Archived from the original on 1 August 2020. Retrieved 30 August 2019.
  241. ^ Harris PJ, Slater TJ, Haigh SJ, Hage FS, Kepaptsoglou DM, Ramasse QM, Brydson R (2014). “Bilayer graphene formed by passage of current through graphite: evidence for a three dimensional structure” (PDF). Nanotechnology25 (46): 465601. Bibcode:2014Nanot..25.5601Hdoi:10.1088/0957-4484/25/46/465601PMID 25354780S2CID 12995375Archived (PDF) from the original on 3 November 2018. Retrieved 30 August 2019.
  242. Jump up to:a b c d “Carbon nanotubes as reinforcing bars to strengthen graphene and increase conductivity”. Kurzweil Library. 9 April 2014. Archived from the original on 12 April 2014. Retrieved 23 April 2014.
  243. ^ Yan, Z.; Peng, Z.; Casillas, G.; Lin, J.; Xiang, C.; Zhou, H.; Yang, Y.; Ruan, G.; Raji, A. R. O.; Samuel, E. L. G.; Hauge, R. H.; Yacaman, M. J.; Tour, J. M. (2014). “Rebar Graphene”ACS Nano8 (5): 5061–8. doi:10.1021/nn501132nPMC 4046778PMID 24694285.
  244. ^ “Robust new process forms 3D shapes from flat sheets of graphene”grainger.illinois.edu. 23 June 2015. Archived from the original on 12 May 2020. Retrieved 31 May 2020.
  245. ^ Jeffrey, Colin (28 June 2015). “Graphene takes on a new dimension”New AtlasArchived from the original on 10 November 2019. Retrieved 10 November 2019.
  246. ^ “How to form 3-D shapes from flat sheets of graphene”Kurzweil Library. 30 June 2015. Archived from the original on 6 October 2015. Retrieved 10 November 2019.
  247. ^ Anthony, Sebastian (10 April 2013). “Graphene aerogel is seven times lighter than air, can balance on a blade of grass – Slideshow | ExtremeTech”ExtremeTechArchived from the original on 8 October 2015. Retrieved 11 October 2015.
  248. Jump up to:a b “Graphene nano-coils discovered to be powerful natural electromagnets”Kurzweil Library. 16 October 2015. Archived from the original on 19 October 2015. Retrieved 10 November 2019.
  249. ^ Xu, Fangbo; Yu, Henry; Sadrzadeh, Arta; Yakobson, Boris I. (14 October 2015). “Riemann Surfaces of Carbon as Graphene Nanosolenoids”. Nano Letters16 (1): 34–9. Bibcode:2016NanoL..16…34Xdoi:10.1021/acs.nanolett.5b02430PMID 26452145.
  250. ^ Stacey, Kevin (21 March 2016). “Wrinkles and crumples make graphene better | News from Brown”news.brown.edu. Brown University. Archived from the original on 8 April 2016. Retrieved 23 June 2016.
  251. ^ Chen, Po-Yen; Sodhi, Jaskiranjeet; Qiu, Yang; Valentin, Thomas M.; Steinberg, Ruben Spitz; Wang, Zhongying; Hurt, Robert H.; Wong, Ian Y. (6 May 2016). “Multiscale Graphene Topographies Programmed by Sequential Mechanical Deformation”. Advanced Materials28 (18). John Wiley & Sons, Inc.: 3564–3571. Bibcode:2016AdM….28.3564Cdoi:10.1002/adma.201506194PMID 26996525S2CID 19544549.
  252. ^ Backes, Claudia; et al. (2020). “Production and processing of graphene and related materials”2D Materials7 (2): 022001. Bibcode:2020TDM…..7b2001Bdoi:10.1088/2053-1583/ab1e0ahdl:2262/91730.
  253. Jump up to:a b c d Whitener, Keith E.; Sheehan, Paul E. (1 June 2014). “Graphene synthesis”Diamond and Related Materials46: 25–34. Bibcode:2014DRM….46…25Wdoi:10.1016/j.diamond.2014.04.006ISSN 0925-9635.
  254. Jump up to:a b Geim, A. K.; MacDonald, A. H. (2007). “Graphene: Exploring carbon flatland”Physics Today60 (8): 35–41. Bibcode:2007PhT….60h..35Gdoi:10.1063/1.2774096S2CID 123480416.
  255. ^ Kusmartsev, F. V.; Wu, W. M.; Pierpoint, M. P.; Yung, K. C. (2014). “Application of Graphene within Optoelectronic Devices and Transistors”. arXiv:1406.0809 [cond-mat.mtrl-sci].
  256. ^ Jayasena, Buddhika; Subbiah Sathyan (2011). “A novel mechanical cleavage method for synthesizing few-layer graphenes”Nanoscale Research Letters6 (95): 95. Bibcode:2011NRL…..6…95Jdoi:10.1186/1556-276X-6-95PMC 3212245PMID 21711598.
  257. ^ “A new method of producing large volumes of high-quality graphene”. KurzweilAI. 2 May 2014. Archived from the original on 10 August 2014. Retrieved 3 August 2014.
  258. ^ Paton, Keith R. (2014). “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids” (PDF). Nature Materials13 (6): 624–630. Bibcode:2014NatMa..13..624Pdoi:10.1038/nmat3944hdl:2262/73941PMID 24747780S2CID 43256835Archived (PDF) from the original on 7 March 2020. Retrieved 30 August 2019.
  259. ^ ROUZAFZAY, F.; SHIDPOUR, R. (2020). “Graphene@ZnO nanocompound for short-time water treatment under sun-simulated irradiation: Effect of shear exfoliation of graphene using kitchen blender on photocatalytic degradation”. Alloys and Compounds829: 154614. doi:10.1016/J.JALLCOM.2020.154614S2CID 216233251.
  260. ^ Paton, Keith R.; Varrla, Eswaraiah; Backes, Claudia; Smith, Ronan J.; Khan, Umar; O’Neill, Arlene; Boland, Conor; Lotya, Mustafa; Istrate, Oana M.; King, Paul; Higgins, Tom; Barwich, Sebastian; May, Peter; Puczkarski, Pawel; Ahmed, Iftikhar; Moebius, Matthias; Pettersson, Henrik; Long, Edmund; Coelho, João; O’Brien, Sean E.; McGuire, Eva K.; Sanchez, Beatriz Mendoza; Duesberg, Georg S.; McEvoy, Niall; Pennycook, Timothy J.; Downing, Clive; Crossley, Alison; Nicolosi, Valeria; Coleman, Jonathan N. (June 2014). “Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids” (PDF). Nature Materials13 (6): 624–630. Bibcode:2014NatMa..13..624Pdoi:10.1038/nmat3944hdl:2262/73941PMID 24747780S2CID 43256835Archived (PDF) from the original on 7 March 2020. Retrieved 30 August 2019.
  261. ^ USA Active US11038172B2, Bor Z. Jang, “Environmentally benign process for producing graphene-protected anode particles for lithium batteries”, published 2020-09-10, issued 2021-06-15, assigned to Nanotek Instruments, Inc and Global Graphene Group, Inc
  262. ^ Lotya, Mustafa; Hernandez, Yenny; King, Paul J.; Smith, Ronan J.; Nicolosi, Valeria; Karlsson, Lisa S.; Blighe, Fiona M.; De, Sukanta; Wang, Zhiming; McGovern, I. T.; Duesberg, Georg S.; Coleman, Jonathan N. (18 March 2009). “Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions”. Journal of the American Chemical Society131 (10): 3611–3620. arXiv:0809.2690Bibcode:2009JAChS.131.3611Ldoi:10.1021/ja807449uPMID 19227978S2CID 16624132.
  263. ^ Backes, Claudia; Campi, Davide; Szydlowska, Beata M.; Synnatschke, Kevin; Ojala, Ezgi; Rashvand, Farnia; Harvey, Andrew; Griffin, Aideen; Sofer, Zdenek; Marzari, Nicola; Coleman, Jonathan N.; O’Regan, David D. (25 June 2019). “Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets”. ACS Nano13 (6): 7050–7061. arXiv:2006.14909doi:10.1021/acsnano.9b02234PMID 31199123S2CID 189813507.
  264. ^ Woltornist, S. J.; Oyer, A. J.; Carrillo, J.-M. Y.; Dobrynin, A. V; Adamson, D. H. (2013). “Conductive thin films of pristine graphene by solvent interface trapping”. ACS Nano7 (8): 7062–6. doi:10.1021/nn402371cPMID 23879536S2CID 27816586.
  265. ^ Coleman, Jonathan N.; Lotya, Mustafa; O’Neill, Arlene; Bergin, Shane D.; King, Paul J.; Khan, Umar; Young, Karen; Gaucher, Alexandre; De, Sukanta; Smith, Ronan J.; Shvets, Igor V.; Arora, Sunil K.; Stanton, George; Kim, Hye-Young; Lee, Kangho; Kim, Gyu Tae; Duesberg, Georg S.; Hallam, Toby; Boland, John J.; Wang, Jing Jing; Donegan, John F.; Grunlan, Jaime C.; Moriarty, Gregory; Shmeliov, Aleksey; Nicholls, Rebecca J.; Perkins, James M.; Grieveson, Eleanor M.; Theuwissen, Koenraad; McComb, David W.; Nellist, Peter D.; Nicolosi, Valeria (4 February 2011). “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials”. Science331 (6017): 568–571. Bibcode:2011Sci…331..568Cdoi:10.1126/science.1194975hdl:2262/66458PMID 21292974S2CID 23576676.
  266. ^ Brumfiel, G. (2009). “Nanotubes cut to ribbons New techniques open up carbon tubes to create ribbons”. Naturedoi:10.1038/news.2009.367.
  267. ^ Kosynkin, D. V.; Higginbotham, Amanda L.; Sinitskii, Alexander; Lomeda, Jay R.; Dimiev, Ayrat; Price, B. Katherine; Tour, James M. (2009). “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”. Nature458 (7240): 872–6. Bibcode:2009Natur.458..872Kdoi:10.1038/nature07872hdl:10044/1/4321PMID 19370030S2CID 2920478.
  268. ^ Liying, Jiao; Zhang, Li; Wang, Xinran; Diankov, Georgi; Dai, Hongjie (2009). “Narrow graphene nanoribbons from carbon nanotubes”. Nature458 (7240): 877–80. Bibcode:2009Natur.458..877Jdoi:10.1038/nature07919PMID 19370031S2CID 205216466.
  269. ^ “How to Make Graphene Using Supersonic Buckyballs | MIT Technology Review”MIT Technology Review. 13 August 2015. Archived from the original on 17 December 2015. Retrieved 11 October 2015.
  270. ^ “Boehm’s 1961 isolation of graphene”Graphene Times. 7 December 2009. Archived from the original on 8 October 2010.
  271. ^ Geim, Andre (January 2010). “Many Pioneers in Graphene Discovery”Letters to the Editor. American Physical Society. Archived from the original on 2 November 2021. Retrieved 10 November 2019.
  272. ^ Eigler, S.; Enzelberger-Heim, M.; Grimm, S.; Hofmann, P.; Kroener, W.; Geworski, A.; Dotzer, C.; Röckert, M.; Xiao, J.; Papp, C.; Lytken, O.; Steinrück, H.-P.; Müller, P.; Hirsch, A. (2013). “Wet Chemical Synthesis of Graphene”. Advanced Materials25 (26): 3583–3587. Bibcode:2013AdM….25.3583Edoi:10.1002/adma.201300155PMID 23703794S2CID 26172029.
  273. ^ El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. (16 March 2012). “Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors”. Science335 (6074): 1326–1330. Bibcode:2012Sci…335.1326Edoi:10.1126/science.1216744PMID 22422977S2CID 18958488.
    Marcus, Jennifer (15 March 2012). “Researchers develop graphene supercapacitor holding promise for portable electronics / UCLA Newsroom”. Newsroom.ucla.edu. Archived from the original on 16 June 2013. Retrieved 20 March 2012.
  274. ^ Sadri, R. (15 February 2017). “Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique”. Journal of Dispersion Science and Technology38 (9): 1302–1310. doi:10.1080/01932691.2016.1234387S2CID 53349683.
  275. ^ Kamali, A.R.; Fray, D.J. (2013). “Molten salt corrosion of graphite as a possible way to make carbon nanostructures”. Carbon56: 121–131. Bibcode:2013Carbo..56..121Kdoi:10.1016/j.carbon.2012.12.076.
  276. ^ Kamali, D.J.Fray (2015). “Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite”Nanoscale7 (26): 11310–11320. doi:10.1039/C5NR01132APMID 26053881.
  277. ^ “How to tune graphene properties by introducing defects | KurzweilAI”www.kurzweilai.net. 30 July 2015. Archived from the original on 5 September 2015. Retrieved 11 October 2015.
  278. ^ Hofmann, Mario; Chiang, Wan-Yu; Nguyễn, Tuân D; Hsieh, Ya-Ping (21 August 2015). “Controlling the properties of graphene produced by electrochemical exfoliation – IOPscience”. Nanotechnology26 (33): 335607. Bibcode:2015Nanot..26G5607Hdoi:10.1088/0957-4484/26/33/335607PMID 26221914S2CID 206072084.
  279. ^ Tang, L.; Li, X.; Ji, R.; Teng, K. S.; Tai, G.; Ye, J.; Wei, C.; Lau, S. P. (2012). “Bottom-up synthesis of large-scale graphene oxide nanosheets”. Journal of Materials Chemistry22 (12): 5676. doi:10.1039/C2JM15944Ahdl:10397/15682.
  280. ^ Li, Xueming; Lau, Shu Ping; Tang, Libin; Ji, Rongbin; Yang, Peizhi (2013). “Multicolour Light emission from chlorine-doped graphene quantum dots”. J. Mater. Chem. C1 (44): 7308–7313. doi:10.1039/C3TC31473Ahdl:10397/34810S2CID 137213724.
  281. ^ Li, Lingling; Wu, Gehui; Yang, Guohai; Peng, Juan; Zhao, Jianwei; Zhu, Jun-Jie (2013). “Focusing on luminescent graphene quantum dots: current status and future perspectives”. Nanoscale5 (10): 4015–39. Bibcode:2013Nanos…5.4015Ldoi:10.1039/C3NR33849EPMID 23579482S2CID 205874900.
  282. ^ Li, Xueming; Lau, Shu Ping; Tang, Libin; Ji, Rongbin; Yang, Peizhi (2014). “Sulphur Doping: A Facile Approach to Tune the Electronic Structure and Optical Properties of Graphene Quantum Dots”. Nanoscale6 (10): 5323–5328. Bibcode:2014Nanos…6.5323Ldoi:10.1039/C4NR00693Chdl:10397/34914PMID 24699893S2CID 23688312.
  283. ^ Choucair, M.; Thordarson, P; Stride, JA (2008). “Gram-scale production of graphene based on solvothermal synthesis and sonication”. Nature Nanotechnology4 (1): 30–3. Bibcode:2009NatNa…4…30Cdoi:10.1038/nnano.2008.365PMID 19119279.
  284. ^ Chiu, Pui Lam; Mastrogiovanni, Daniel D. T.; Wei, Dongguang; Louis, Cassandre; Jeong, Min; Yu, Guo; Saad, Peter; Flach, Carol R.; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin (4 April 2012). “Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen Graphene”. Journal of the American Chemical Society134 (13): 5850–5856. Bibcode:2012JAChS.134.5850Cdoi:10.1021/ja210725pPMID 22385480S2CID 11991071.
  285. ^ Patel, Mehulkumar; Feng, Wenchun; Savaram, Keerthi; Khoshi, M. Reza; Huang, Ruiming; Sun, Jing; Rabie, Emann; Flach, Carol; Mendelsohn, Richard; Garfunkel, Eric; He, Huixin (2015). “Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications”. Small11 (27): 3358–68. doi:10.1002/smll.201403402hdl:2027.42/112245PMID 25683019S2CID 14567874.
  286. ^ Sutter, P. (2009). “Epitaxial graphene: How silicon leaves the scene”Nature Materials8 (3): 171–2. Bibcode:2009NatMa…8..171Sdoi:10.1038/nmat2392PMID 19229263Archived from the original on 1 August 2020. Retrieved 12 April 2020.
  287. ^ Gall, N. R.; Rut’Kov, E. V.; Tontegode, A. Ya. (1997). “Two Dimensional Graphite Films on Metals and Their Intercalation”. International Journal of Modern Physics B11 (16): 1865–1911. Bibcode:1997IJMPB..11.1865Gdoi:10.1142/S0217979297000976.
  288. ^ “Samsung’s graphene breakthrough could finally put the wonder material into real-world devices”ExtremeTech. 7 April 2014. Archived from the original on 14 April 2014. Retrieved 13 April 2014.
  289. ^ Lee, J.-H.; Lee, E. K.; Joo, W.-J.; Jang, Y.; Kim, B.-S.; Lim, J. Y.; Choi, S.-H.; Ahn, S. J.; Ahn, J. R.; Park, M.-H.; Yang, C.-W.; Choi, B. L.; Hwang, S.-W.; Whang, D. (2014). “Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium”. Science344 (6181): 286–9. Bibcode:2014Sci…344..286Ldoi:10.1126/science.1252268PMID 24700471S2CID 206556123.
  290. ^ Bansal, Tanesh; Durcan, Christopher A.; Jain, Nikhil; Jacobs-Gedrim, Robin B.; Xu, Yang; Yu, Bin (2013). “Synthesis of few-to-monolayer graphene on rutile titanium dioxide”. Carbon55: 168–175. Bibcode:2013Carbo..55..168Bdoi:10.1016/j.carbon.2012.12.023.
  291. ^ “A smarter way to grow graphene”. PhysOrg.com. May 2008. Archived from the original on 28 January 2012. Retrieved 11 November 2008.
  292. ^ Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; n’Diaye, A.; Busse, C.; Michely, T. (2009). “Dirac Cones and Minigaps for Graphene on Ir(111)”. Physical Review Letters102 (5): 056808. arXiv:0807.2770Bibcode:2009PhRvL.102e6808Pdoi:10.1103/PhysRevLett.102.056808PMID 19257540S2CID 43507175.
  293. ^ “New process could lead to more widespread use of graphene”. Gizmag.com. 28 May 2014. Archived from the original on 5 September 2015. Retrieved 14 June 2014.
  294. ^ Liu, W.; Li, H.; Xu, C.; Khatami, Y.; Banerjee, K. (2011). “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition”Carbon49 (13): 4122–4130. Bibcode:2011Carbo..49.4122Ldoi:10.1016/j.carbon.2011.05.047Archived from the original on 4 February 2021. Retrieved 8 April 2020.
  295. ^ Mattevi, Cecilia; Kim, Hokwon; Chhowalla, Manish (2011). “A review of chemical vapour deposition of graphene on copper”. Journal of Materials Chemistry21 (10): 3324–3334. doi:10.1039/C0JM02126AS2CID 213144.
  296. ^ Martin, Steve (18 September 2014). “Purdue-based startup scales up graphene production, develops biosensors and supercapacitors”. Purdue University. Archived from the original on 3 October 2014. Retrieved 4 October 2014.
  297. ^ “Startup scales up graphene production, develops biosensors and supercapacitors”R&D Magazine. 19 September 2014. Archived from the original on 6 October 2014. Retrieved 4 October 2014.
  298. ^ Quick, Darren (26 June 2015). “New process could usher in “graphene-driven industrial revolution””www.gizmag.comArchived from the original on 6 September 2015. Retrieved 5 October 2015.
  299. ^ Bointon, Thomas H.; Barnes, Matthew D.; Russo, Saverio; Craciun, Monica F. (July 2015). “High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition”Advanced Materials27 (28): 4200–4206. arXiv:1506.08569Bibcode:2015AdM….27.4200Bdoi:10.1002/adma.201501600PMC 4744682PMID 26053564.
  300. ^ Tao, Li; Lee, Jongho; Chou, Harry; Holt, Milo; Ruoff, Rodney S.; Akinwande, Deji (27 March 2012). “Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films”. ACS Nano6 (3): 2319–2325. doi:10.1021/nn205068nPMID 22314052S2CID 30130350.
  301. Jump up to:a b Tao, Li; Lee, Jongho; Holt, Milo; Chou, Harry; McDonnell, Stephen J.; Ferrer, Domingo A.; Babenco, Matías G.; Wallace, Robert M.; Banerjee, Sanjay K. (15 November 2012). “Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated Monolayer”. The Journal of Physical Chemistry C116 (45): 24068–24074. doi:10.1021/jp3068848S2CID 55726071.
  302. Jump up to:a b Rahimi, Somayyeh; Tao, Li; Chowdhury, Sk. Fahad; Park, Saungeun; Jouvray, Alex; Buttress, Simon; Rupesinghe, Nalin; Teo, Ken; Akinwande, Deji (28 October 2014). “Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors”. ACS Nano8 (10): 10471–10479. doi:10.1021/nn5038493PMID 25198884S2CID 5077855.
  303. ^ Woltornist, Steven J.; Alamer, Fahad Alhashmi; McDannald, Austin; Jain, Menka; Sotzing, Gregory A.; Adamson, Douglas H. (1 January 2015). “Preparation of conductive graphene/graphite infused fabrics using an interface trapping method”Carbon81: 38–42. Bibcode:2015Carbo..81…38Wdoi:10.1016/j.carbon.2014.09.020ISSN 0008-6223.
  304. ^ Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H. (10 February 2015). “Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams”Macromolecules48 (3): 687–693. Bibcode:2015MaMol..48..687Wdoi:10.1021/ma5024236ISSN 0024-9297OSTI 1265313Archived from the original on 13 July 2022. Retrieved 13 July 2022.
  305. ^ Ward, Shawn P.; Abeykoon, Prabodha G.; McDermott, Sean T.; Adamson, Douglas H. (8 September 2020). “Effect of Aqueous Anions on Graphene Exfoliation”Langmuir36 (35): 10421–10428. doi:10.1021/acs.langmuir.0c01569ISSN 0743-7463PMID 32794716S2CID 225385130Archived from the original on 13 July 2022. Retrieved 13 July 2022.
  306. ^ Bento, Jennifer L.; Brown, Elizabeth; Woltornist, Steven J.; Adamson, Douglas H. (January 2017). “Thermal and Electrical Properties of Nanocomposites Based on Self-Assembled Pristine Graphene”Advanced Functional Materials27 (1): 1604277. doi:10.1002/adfm.201604277ISSN 1616-301XS2CID 102395615.
  307. ^ Woltornist, Steven J.; Varghese, Deepthi; Massucci, Daniel; Cao, Zhen; Dobrynin, Andrey V.; Adamson, Douglas H. (May 2017). “Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shape-Responsive Materials”Advanced Materials29 (18): 1604947. Bibcode:2017AdM….2904947Wdoi:10.1002/adma.201604947ISSN 0935-9648PMID 28262992S2CID 205274548Archived from the original on 13 July 2022. Retrieved 13 July 2022.
  308. ^ Varghese, Deepthi; Bento, Jennifer L.; Ward, Shawn P.; Adamson, Douglas H. (16 June 2020). “Self-Assembled Graphene Composites for Flow-Through Filtration”ACS Applied Materials & Interfaces12 (26): 29692–29699. doi:10.1021/acsami.0c05831ISSN 1944-8244PMID 32492330S2CID 219316507Archived from the original on 13 July 2022. Retrieved 13 July 2022.
  309. ^ Brown, Elizabeth E. B.; Woltornist, Steven J.; Adamson, Douglas H. (15 November 2020). “PolyHIPE foams from pristine graphene: Strong, porous, and electrically conductive materials templated by a 2D surfactant”Journal of Colloid and Interface Science580: 700–708. Bibcode:2020JCIS..580..700Bdoi:10.1016/j.jcis.2020.07.026ISSN 0021-9797PMID 32712476S2CID 220798190.
  310. ^ Liyanage, Chinthani D.; Varghese, Deepthi; Brown, Elizabeth E. B.; Adamson, Douglas H. (5 November 2019). “Pristine Graphene Microspheres by the Spreading and Trapping of Graphene at an Interface”Langmuir35 (44): 14310–14315. doi:10.1021/acs.langmuir.9b02650ISSN 0743-7463PMID 31647673S2CID 204883163Archived from the original on 13 July 2022. Retrieved 13 July 2022.
  311. ^ Woltornist, Steven J.; Oyer, Andrew J.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Adamson, Douglas H. (27 August 2013). “Conductive Thin Films of Pristine Graphene by Solvent Interface Trapping”ACS Nano7 (8): 7062–7066. doi:10.1021/nn402371cISSN 1936-0851PMID 23879536Archived from the original on 13 July 2022. Retrieved 13 July 2022.
  312. ^ Chen, Feiyang; Varghese, Deepthi; McDermott, Sean T.; George, Ian; Geng, Lijiang; Adamson, Douglas H. (22 October 2020). “Interface-exfoliated graphene-based conductive screen-printing inks: low-loading, low-cost, and additive-free”Scientific Reports10 (1): 18047. Bibcode:2020NatSR..1018047Cdoi:10.1038/s41598-020-74821-3ISSN 2045-2322PMC 7583245PMID 33093555.
  313. ^ Chakrabarti, A.; Lu, J.; Skrabutenas, J. C.; Xu, T.; Xiao, Z.; Maguire, J. A.; Hosmane, N. S. (2011). “Conversion of carbon dioxide to few-layer graphene”. Journal of Materials Chemistry21 (26): 9491. doi:10.1039/C1JM11227AS2CID 96850993.
  314. ^ Kim, D. Y.; Sinha-Ray, S.; Park, J. J.; Lee, J. G.; Cha, Y. H.; Bae, S. H.; Ahn, J. H.; Jung, Y. C.; Kim, S. M.; Yarin, A. L.; Yoon, S. S. (2014). “Self-Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying”. Advanced Functional Materials24 (31): 4986–4995. doi:10.1002/adfm.201400732S2CID 96283118.
  315. ^ Kim, Do-Yeon; Sinha-Ray, Suman; Park, Jung-Jae; Lee, Jong-Gun; Cha, You-Hong; Bae, Sang-Hoon; Ahn, Jong-Hyun; Jung, Yong Chae; Kim, Soo Min; Yarin, Alexander L.; Yoon, Sam S. (2014). “Supersonic spray creates high-quality graphene layer”Advanced Functional Materials24 (31). KurzweilAI: 4986–4995. doi:10.1002/adfm.201400732S2CID 96283118Archived from the original on 4 June 2014. Retrieved 14 June 2014.
  316. ^ Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. (2014). “Laser-induced porous graphene films from commercial polymers”Nature Communications5: 5714. Bibcode:2014NatCo…5.5714Ldoi:10.1038/ncomms6714PMC 4264682PMID 25493446.
  317. ^ Duy, Luong Xuan; Peng, Zhiwei; Li, Yilun; Zhang, Jibo; Ji, Yongsung; Tour, James M. (1 January 2018). “Laser-induced graphene fibers”Carbon126: 472–479. Bibcode:2018Carbo.126..472Ddoi:10.1016/j.carbon.2017.10.036ISSN 0008-6223.
  318. ^ Stanford, Michael G.; Bets, Ksenia V.; Luong, Duy X.; Advincula, Paul A.; Chen, Weiyin; Li, John Tianci; Wang, Zhe; McHugh, Emily A.; Algozeeb, Wala A.; Yakobson, Boris I.; Tour, James M. (27 October 2020). “Flash Graphene Morphologies”ACS Nano14 (10): 13691–13699. doi:10.1021/acsnano.0c05900ISSN 1936-0851OSTI 1798502PMID 32909736S2CID 221623214Archived from the original on 4 August 2022. Retrieved 16 October 2021.
  319. ^ Algozeeb, Wala A.; Savas, Paul E.; Luong, Duy Xuan; Chen, Weiyin; Kittrell, Carter; Bhat, Mahesh; Shahsavari, Rouzbeh; Tour, James M. (24 November 2020). “Flash Graphene from Plastic Waste”ACS Nano14 (11): 15595–15604. doi:10.1021/acsnano.0c06328ISSN 1936-0851OSTI 1798504PMID 33119255S2CID 226203667Archived from the original on 16 October 2021. Retrieved 16 October 2021.
  320. ^ Wyss, Kevin M.; Beckham, Jacob L.; Chen, Weiyin; Luong, Duy Xuan; Hundi, Prabhas; Raghuraman, Shivaranjan; Shahsavari, Rouzbeh; Tour, James M. (15 April 2021). “Converting plastic waste pyrolysis ash into flash graphene”Carbon174: 430–438. Bibcode:2021Carbo.174..430Wdoi:10.1016/j.carbon.2020.12.063ISSN 0008-6223S2CID 232864412.
  321. ^ Advincula, Paul A.; Luong, Duy Xuan; Chen, Weiyin; Raghuraman, Shivaranjan; Shahsavari, Rouzbeh; Tour, James M. (June 2021). “Flash graphene from rubber waste”Carbon178: 649–656. Bibcode:2021Carbo.178..649Adoi:10.1016/j.carbon.2021.03.020ISSN 0008-6223S2CID 233573678.
  322. ^ “Korean researchers grow wafer-scale graphene on a silicon substrate | KurzweilAI”www.kurzweilai.net. 21 July 2015. Archived from the original on 7 August 2020. Retrieved 11 October 2015.
  323. ^ Kim, Janghyuk; Lee, Geonyeop; Kim, Jihyun (20 July 2015). “Wafer-scale synthesis of multi-layer graphene by high-temperature carbon ion implantation”. Applied Physics Letters107 (3): 033104. Bibcode:2015ApPhL.107c3104Kdoi:10.1063/1.4926605.
  324. ^ Thomas, Stuart (2018). “CMOS-compatible graphene”Nature Electronics1 (12): 612. doi:10.1038/s41928-018-0178-xS2CID 116643404.
  325. ^ Jiang, Junkai; Chu, Jae Hwan; Banerjee, Kaustav (2018). “CMOS-Compatible Doped-Multilayer-Graphene Interconnects for Next-Generation VLSI”. 2018 IEEE International Electron Devices Meeting (IEDM). pp. 34.5.1–34.5.4. doi:10.1109/IEDM.2018.8614535ISBN 978-1-7281-1987-8S2CID 58675631.
  326. ^ “Graphene goes mainstream”The Current, UC Santa Barbara. 23 July 2019. Archived from the original on 1 August 2020. Retrieved 9 April 2020.
  327. ^ Gusynin, V P; Sharapov, S G; Carbotte, J P (17 January 2007). “Magneto-optical conductivity in graphene”. Journal of Physics: Condensed Matter19 (2): 026222. arXiv:0705.3783Bibcode:2007JPCM…19b6222Gdoi:10.1088/0953-8984/19/2/026222S2CID 119638159.
  328. ^ Hanson, George W. (March 2008). “Dyadic Green’s Functions for an Anisotropic, Non-Local Model of Biased Graphene”. IEEE Transactions on Antennas and Propagation56 (3): 747–757. Bibcode:2008ITAP…56..747Hdoi:10.1109/TAP.2008.917005S2CID 32535262.
  329. ^ Niu, Kaikun; Li, Ping; Huang, Zhixiang; Jiang, Li Jun; Bagci, Hakan (2020). “Numerical Methods for Electromagnetic Modeling of Graphene: A Review”. IEEE Journal on Multiscale and Multiphysics Computational Techniques5: 44–58. Bibcode:2020IJMMC…5…44Ndoi:10.1109/JMMCT.2020.2983336hdl:10754/662399S2CID 216262889.
  330. ^ Polini, Marco; Guinea, Francisco; Lewenstein, Maciej; Manoharan, Hari C.; Pellegrini, Vittorio (September 2013). “Artificial honeycomb lattices for electrons, atoms and photons”. Nature Nanotechnology8 (9): 625–633. arXiv:1304.0750Bibcode:2013NatNa…8..625Pdoi:10.1038/nnano.2013.161PMID 24002076.
  331. ^ Plotnik, Yonatan; Rechtsman, Mikael C.; Song, Daohong; Heinrich, Matthias; Zeuner, Julia M.; Nolte, Stefan; Lumer, Yaakov; Malkova, Natalia; Xu, Jingjun; Szameit, Alexander; Chen, Zhigang; Segev, Mordechai (January 2014). “Observation of unconventional edge states in ‘photonic graphene'”. Nature Materials13 (1): 57–62. arXiv:1210.5361Bibcode:2014NatMa..13…57Pdoi:10.1038/nmat3783PMID 24193661S2CID 26962706.
  332. ^ Bellec, Matthieu; Kuhl, Ulrich; Montambaux, Gilles; Mortessagne, Fabrice (14 January 2013). “Topological Transition of Dirac Points in a Microwave Experiment”. Physical Review Letters110 (3): 033902. arXiv:1210.4642Bibcode:2013PhRvL.110c3902Bdoi:10.1103/PhysRevLett.110.033902PMID 23373925S2CID 8335461.
  333. ^ Scheeler, Sebastian P.; Mühlig, Stefan; Rockstuhl, Carsten; Hasan, Shakeeb Bin; Ullrich, Simon; Neubrech, Frank; Kudera, Stefan; Pacholski, Claudia (12 September 2013). “Plasmon Coupling in Self-Assembled Gold Nanoparticle-Based Honeycomb Islands”. The Journal of Physical Chemistry C117 (36): 18634–18641. doi:10.1021/jp405560t.
  334. ^ Jacqmin, T.; Carusotto, I.; Sagnes, I.; Abbarchi, M.; Solnyshkov, D. D.; Malpuech, G.; Galopin, E.; Lemaître, A.; Bloch, J. (18 March 2014). “Direct Observation of Dirac Cones and a Flatband in a Honeycomb Lattice for Polaritons”. Physical Review Letters112 (11): 116402. arXiv:1310.8105Bibcode:2014PhRvL.112k6402Jdoi:10.1103/PhysRevLett.112.116402PMID 24702392S2CID 31526933.
  335. ^ Sengstock, K.; Lewenstein, M.; Windpassinger, P.; Becker, C.; Meineke, G.; Plenkers, W.; Bick, A.; Hauke, P.; Struck, J.; Soltan-Panahi, P. (May 2011). “Multi-component quantum gases in spin-dependent hexagonal lattices”. Nature Physics7 (5): 434–440. arXiv:1005.1276Bibcode:2011NatPh…7..434Sdoi:10.1038/nphys1916S2CID 118519844.
  336. ^ Zhong, Mengyao; Xu, Dikai; Yu, Xuegong; Huang, Kun; Liu, Xuemei; Qu, Yiming; Xu, Yang; Yang, Deren (October 2016). “Interface coupling in graphene/fluorographene heterostructure for high-performance graphene/silicon solar cells”. Nano Energy28: 12–18. Bibcode:2016NEne…28…12Zdoi:10.1016/j.nanoen.2016.08.031.
  337. ^ Phare, Christopher T.; Daniel Lee, Yoon-Ho; Cardenas, Jaime; Lipson, Michal (2015). “Graphene electro-optic modulator with 30 GHz bandwidth”Nature Photonics9 (8): 511–514. Bibcode:2015NaPho…9..511Pdoi:10.1038/nphoton.2015.122ISSN 1749-4893S2CID 117786282Archived from the original on 24 September 2022. Retrieved 19 September 2022.
  338. ^ Meng, Yuan; Ye, Shengwei; Shen, Yijie; Xiao, Qirong; Fu, Xing; Lu, Rongguo; Liu, Yong; Gong, Mali (2018). “Waveguide Engineering of Graphene Optoelectronics—Modulators and Polarizers”IEEE Photonics Journal10 (1): 1–17. Bibcode:2018IPhoJ..1089894Mdoi:10.1109/JPHOT.2018.2789894ISSN 1943-0655S2CID 25707442.
  339. ^ Akinwande, D.; Tao, L.; Yu, Q.; Lou, X.; Peng, P.; Kuzum, D. (1 September 2015). “Large-Area Graphene Electrodes: Using CVD to facilitate applications in commercial touchscreens, flexible nanoelectronics, and neural interfaces”. IEEE Nanotechnology Magazine9 (3): 6–14. doi:10.1109/MNANO.2015.2441105S2CID 26541191.
  340. ^ Kong, Wei; Kum, Hyun; Bae, Sang-Hoon; Shim, Jaewoo; Kim, Hyunseok; Kong, Lingping; Meng, Yuan; Wang, Kejia; Kim, Chansoo; Kim, Jeehwan (2019). “Path towards graphene commercialization from lab to market”Nature Nanotechnology14 (10): 927–938. Bibcode:2019NatNa..14..927Kdoi:10.1038/s41565-019-0555-2ISSN 1748-3395PMID 31582831S2CID 203653990Archived from the original on 22 September 2022. Retrieved 17 September 2022.
  341. ^ “Racquet Review: Head Graphene XT Speed Pro”Tennis.comArchived from the original on 2 May 2019. Retrieved 15 October 2016.
  342. ^ “GRAPHENITE – GRAPHENE INFUSED 3D PRINTER POWDER – 30 Lbs – $499.95”noble3dprinters.com. Noble3DPrinters. Retrieved 16 July 2015.[permanent dead link]
  343. ^ “Graphene Uses & Applications”. Graphenea. Archived from the original on 11 February 2014. Retrieved 13 April 2014.
  344. ^ Lalwani, G; Henslee, A. M.; Farshid, B; Lin, L; Kasper, F. K.; Qin, Y. X.; Mikos, A. G.; Sitharaman, B (2013). “Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering”Biomacromolecules14 (3): 900–9. doi:10.1021/bm301995sPMC 3601907PMID 23405887.
  345. ^ Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. (2009). “Enhanced mechanical properties of nanocomposites at low graphene content”. ACS Nano3 (12): 3884–3890. doi:10.1021/nn9010472PMID 19957928S2CID 18266151.
  346. ^ “Applied Graphene Materials plc :: Graphene dispersions”appliedgraphenematerials.com. Archived from the original on 27 May 2014. Retrieved 26 May 2014.
  347. ^ “BAC Debuts First Ever Graphene Constructed Vehicle”. 2 August 2016. Archived from the original on 4 August 2016. Retrieved 4 August 2016.
  348. ^ Kang, Jiahao; Matsumoto, Yuji; Li, Xiang; Jiang, Junkai; Xie, Xuejun; Kawamoto, Keisuke; Kenmoku, Munehiro; Chu, Jae Hwan; Liu, Wei; Mao, Junfa; Ueno, Kazuyoshi; Banerjee, Kaustav (2018). “On-chip intercalated-graphene inductors for next-generation radio frequency electronics”Nature Electronics1: 46–51. doi:10.1038/s41928-017-0010-zS2CID 139420526Archived from the original on 8 June 2020. Retrieved 25 August 2020.
  349. ^ Siegel, E. (2018). “The Last Barrier to Ultra-Miniaturized Electronics is Broken, Thanks To A New Type Of Inductor”Forbes.comArchived from the original on 1 August 2020. Retrieved 8 April 2020.
  350. ^ “Engineers reinvent the inductor after two centuries”physicsworld. 2018. Archived from the original on 8 April 2020. Retrieved 8 April 2020.
  351. ^ Reiss, T.; Hjelt, K.; Ferrari, A.C. (2019). “Graphene is on track to deliver on its promises”. Nature Nanotechnology14 (907): 907–910. Bibcode:2019NatNa..14..907Rdoi:10.1038/s41565-019-0557-0PMID 31582830S2CID 203653976.
  352. ^ Monetta, T.; Acquesta, A.; Carangelo, A.; Bellucci, F. (1 September 2018). “Considering the effect of graphene loading in water-based epoxy coatings”Journal of Coatings Technology and Research15 (5): 923–931. doi:10.1007/s11998-018-0045-8ISSN 1935-3804S2CID 139956928.
  353. ^ Castellanos-Gomez, Andres; Duan, Xiangfeng; Fei, Zhe; Gutierrez, Humberto Rodriguez; Huang, Yuan; Huang, Xinyu; Quereda, Jorge; Qian, Qi; Sutter, Eli; Sutter, Peter (28 July 2022). “Van der Waals heterostructures”Nature Reviews Methods Primers2 (1): 1–19. doi:10.1038/s43586-022-00139-1ISSN 2662-8449OSTI 1891442S2CID 251175507Archived from the original on 21 April 2023. Retrieved 21 April 2023.
  354. ^ Meng, Yuan; Feng, Jiangang; Han, Sangmoon; Xu, Zhihao; Mao, Wenbo; Zhang, Tan; Kim, Justin S.; Roh, Ilpyo; Zhao, Yepin; Kim, Dong-Hwan; Yang, Yang; Lee, Jin-Wook; Yang, Lan; Qiu, Cheng-Wei; Bae, Sang-Hoon (21 April 2023). “Photonic van der Waals integration from 2D materials to 3D nanomembranes”Nature Reviews Materials8 (8): 498–517. Bibcode:2023NatRM…8..498Mdoi:10.1038/s41578-023-00558-wISSN 2058-8437S2CID 258279195Archived from the original on 21 April 2023. Retrieved 21 April 2023.
  355. ^ Liu, Yuan; Huang, Yu; Duan, Xiangfeng (March 2019). “Van der Waals integration before and beyond two-dimensional materials”Nature567 (7748): 323–333. Bibcode:2019Natur.567..323Ldoi:10.1038/s41586-019-1013-xISSN 1476-4687PMID 30894723S2CID 256768556.
  356. ^ Shahdeo, Deepshikha; Roberts, Akanksha (2020). “Graphene based sensors”. In Chaudhery Mustansar Hussain (ed.). Comprehensive Analytical Chemistry. Vol. 91. pp. 175–199. doi:10.1016/bs.coac.2020.08.007ISBN 978-0-323-85371-2.
  357. ^ Liu, Jihong; Bao, Siyu (2022). “Applications of Graphene-Based Materials in Sensors: A Review”Micromachines13 (2): 184. doi:10.3390/mi13020184PMC 8880160PMID 35208308.
  358. ^ Li, Zongwen; Zhang, Wenfei (2019). “Graphene Optical Biosensors”Int J Mol Sci20 (10): 2461. doi:10.3390/ijms20102461PMC 6567174PMID 31109057.
  359. ^ Lalwani, Gaurav; D’Agati, Michael; Mahmud Khan, Amit; Sitharaman, Balaji (2016). “Toxicology of graphene-based nanomaterials”Advanced Drug Delivery Reviews105 (Pt B): 109–144. doi:10.1016/j.addr.2016.04.028PMC 5039077PMID 27154267.
  360. ^ Ou, Lingling; Song, Bin; Liang, Huimin; Liu, Jia; Feng, Xiaoli; Deng, Bin; Sun, Ting; Shao, Longquan (2016). “Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms”Particle and Fibre Toxicology13 (1): 57. Bibcode:2016PFTox..13…57Odoi:10.1186/s12989-016-0168-yPMC 5088662PMID 27799056.
  361. ^ Joshi, Shubhi; Siddiqui, Ruby; Sharma, Pratibha; Kumar, Rajesh; Verma, Gaurav; Saini, Avneet (2020). “Green synthesis of peptide-functionalized reduced graphene oxide (rGO) nano bioconjugate with enhanced antibacterial activity”Scientific Reports10 (9441): 9441. Bibcode:2020NatSR..10.9441Jdoi:10.1038/s41598-020-66230-3PMC 7287048PMID 32523022.
  362. ^ Talukdar, Y; Rashkow, J. T.; Lalwani, G; Kanakia, S; Sitharaman, B (2014). “The effects of graphene nanostructures on mesenchymal stem cells”Biomaterials35 (18): 4863–77. doi:10.1016/j.biomaterials.2014.02.054PMC 3995421PMID 24674462.
  363. ^ Stacey, Kevin (10 July 2013). “Jagged graphene edges can slice and dice cell membranes – News from Brown”brown.eduArchived from the original on 25 March 2015. Retrieved 9 March 2015.
  364. ^ Li, Y.; Yuan, H.; von Dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. (2013). “Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites”Proceedings of the National Academy of Sciences110 (30): 12295–12300. Bibcode:2013PNAS..11012295Ldoi:10.1073/pnas.1222276110PMC 3725082PMID 23840061.